Home
Class 11
MATHS
The value of sin""(pi)/(10)sin""(13pi)/(...

The value of `sin""(pi)/(10)sin""(13pi)/(10)` is

A

`(1)/(2)`

B

`-(1)/(2)`

C

`-(1)/(4)`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sin\left(\frac{\pi}{10}\right) \sin\left(\frac{13\pi}{10}\right) \), we can follow these steps: ### Step 1: Rewrite \( \sin\left(\frac{13\pi}{10}\right) \) We can express \( \sin\left(\frac{13\pi}{10}\right) \) in terms of a known angle: \[ \sin\left(\frac{13\pi}{10}\right) = \sin\left(\pi + \frac{3\pi}{10}\right) \] Using the identity \( \sin(\pi + \theta) = -\sin(\theta) \), we have: \[ \sin\left(\frac{13\pi}{10}\right) = -\sin\left(\frac{3\pi}{10}\right) \] ### Step 2: Substitute back into the expression Now, substitute this back into the original expression: \[ \sin\left(\frac{\pi}{10}\right) \sin\left(\frac{13\pi}{10}\right) = \sin\left(\frac{\pi}{10}\right) \cdot \left(-\sin\left(\frac{3\pi}{10}\right)\right) \] This simplifies to: \[ -\sin\left(\frac{\pi}{10}\right) \sin\left(\frac{3\pi}{10}\right) \] ### Step 3: Use the identity for \( \sin A \sin B \) We can use the product-to-sum identities: \[ \sin A \sin B = \frac{1}{2} \left( \cos(A - B) - \cos(A + B) \right) \] Let \( A = \frac{\pi}{10} \) and \( B = \frac{3\pi}{10} \): \[ -\sin\left(\frac{\pi}{10}\right) \sin\left(\frac{3\pi}{10}\right) = -\frac{1}{2} \left( \cos\left(\frac{\pi}{10} - \frac{3\pi}{10}\right) - \cos\left(\frac{\pi}{10} + \frac{3\pi}{10}\right) \right) \] ### Step 4: Calculate the angles Calculating the angles: \[ \frac{\pi}{10} - \frac{3\pi}{10} = -\frac{2\pi}{10} = -\frac{\pi}{5} \] \[ \frac{\pi}{10} + \frac{3\pi}{10} = \frac{4\pi}{10} = \frac{2\pi}{5} \] ### Step 5: Substitute the angles back Now substituting these angles back into the expression: \[ -\frac{1}{2} \left( \cos\left(-\frac{\pi}{5}\right) - \cos\left(\frac{2\pi}{5}\right) \right) \] Using the fact that \( \cos(-x) = \cos(x) \): \[ -\frac{1}{2} \left( \cos\left(\frac{\pi}{5}\right) - \cos\left(\frac{2\pi}{5}\right) \right) \] ### Step 6: Use known values of cosines We know that: \[ \cos\left(\frac{\pi}{5}\right) = \frac{1 + \sqrt{5}}{4}, \quad \cos\left(\frac{2\pi}{5}\right) = \frac{\sqrt{5} - 1}{4} \] Substituting these values: \[ -\frac{1}{2} \left( \frac{1 + \sqrt{5}}{4} - \frac{\sqrt{5} - 1}{4} \right) \] Simplifying this: \[ -\frac{1}{2} \left( \frac{1 + \sqrt{5} - \sqrt{5} + 1}{4} \right) = -\frac{1}{2} \left( \frac{2}{4} \right) = -\frac{1}{2} \cdot \frac{1}{2} = -\frac{1}{4} \] ### Final Answer Thus, the value of \( \sin\left(\frac{\pi}{10}\right) \sin\left(\frac{13\pi}{10}\right) \) is: \[ \boxed{-\frac{1}{4}} \]

To find the value of \( \sin\left(\frac{\pi}{10}\right) \sin\left(\frac{13\pi}{10}\right) \), we can follow these steps: ### Step 1: Rewrite \( \sin\left(\frac{13\pi}{10}\right) \) We can express \( \sin\left(\frac{13\pi}{10}\right) \) in terms of a known angle: \[ \sin\left(\frac{13\pi}{10}\right) = \sin\left(\pi + \frac{3\pi}{10}\right) \] Using the identity \( \sin(\pi + \theta) = -\sin(\theta) \), we have: ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|10 Videos
  • STRAIGHT LINES

    NCERT EXEMPLAR ENGLISH|Exercise MATCHING THE COLUMN|3 Videos

Similar Questions

Explore conceptually related problems

Find the value of (a) sin(pi)/(10)+sin(13pi)/(10) (b) cos^(2)48^(@)=sin^(2) 12^(@)

The value of sin""(15pi)/(32)sin""(7pi)/(16)sin""(3pi)/(8), is

The value of sin""(2pi)/(7)+sin""(4pi)/(7)+sin""(8pi)/(7), is

Find the value of cos""(pi)/(12)(sin""(5pi)/(12)+cos""(pi)/(4))+sin""(pi)/(12)(cos""(5pi)/(12)-sin""(pi)/(4)) .

The value of ("sin"(pi)/(9))(4+"sec"(pi)/(9)) is :

The value of "cosec".(pi)/(18)-4 sin""(7pi)/(18) is ____________

Value of sin""(pi)/(18)*sin""(5pi)/(18)*sin""(7 pi)/(18) =

The value of sinpi/(14)sin(3pi)/(14)sin(5pi)/(14)sin(7pi)/(14)sin(9pi)/(14)sin(11pi)/(14)sin(13pi)/(14) is equal to___________

The value of sin(pi/14)sin(3pi/14)sin(5pi/14)sin(7pi/14)sin(9pi/14)sin(11pi/14)sin(13pi/14) is equal to___________

The value of sin(pi/14)sin((3pi)/14)sin((5pi)/14) is

NCERT EXEMPLAR ENGLISH-TRIGONOMETRIC FUNCTIONS -OBJECTIVE TYPE QUESTIONS
  1. The minimum of 3cosx +4sin x+8 is

    Text Solution

    |

  2. tan 3A-tan 2A-tan A= is equal to

    Text Solution

    |

  3. The value of sin(45^(@)+theta)-cos(45^(@)-theta) is

    Text Solution

    |

  4. The value of cot((pi)/(4)+theta)cot((pi)/(4)-theta) is

    Text Solution

    |

  5. cos2thetacos2phi+sin^2(theta-phi)-sin^2(theta+phi)=

    Text Solution

    |

  6. The value of cos12^@+cos84^@+cos156^@+cos132^@ is

    Text Solution

    |

  7. If tanA=(1)/(2) and tanB=(1)/(3), then tan(2A+B) is equal to

    Text Solution

    |

  8. The value of sin""(pi)/(10)sin""(13pi)/(10) is

    Text Solution

    |

  9. The value of sin50^(@)-sin70^(@)+sin10^(@) is

    Text Solution

    |

  10. If sintheta+costheta=1, then the value of sin2theta is

    Text Solution

    |

  11. If alpha+beta=pi/4 then (1+tan alpha)(1+tan beta)=

    Text Solution

    |

  12. If sintheta=(-4)/(5) and theta lies in third quadrant, then the value...

    Text Solution

    |

  13. The number of solutions of equation tanx+secx=2cosx lying in the inter...

    Text Solution

    |

  14. The value of sin(pi/18)+sin(pi/9)+sin((2pi)/9)+sin((5pi)/18) is

    Text Solution

    |

  15. If A lies in the second quadrant and 3tanA + 4=0, then find the value ...

    Text Solution

    |

  16. The value of cos^(2)48^(@)-sin^(2)12^(@) is

    Text Solution

    |

  17. If tanalpha =(1)/(7) and tanbeta =(1)/(3) , then, cos2alpha is equal ...

    Text Solution

    |

  18. If tantheta=(a)/(b), then bcos2theta+asin2theta is equal to

    Text Solution

    |

  19. If for real values of x, costheta=x+(1)/(x), then

    Text Solution

    |

  20. The value of (sin50^(@))/(sin130^(@)) is ….. .

    Text Solution

    |