Home
Class 11
MATHS
The value of cos^(2)48^(@)-sin^(2)12^(@)...

The value of `cos^(2)48^(@)-sin^(2)12^(@)` is

A

`(sqrt(5)+1)/(8)`

B

`(sqrt(5)-1)/(8)`

C

`(sqrt(5)+1)/(5)`

D

`(sqrt(5)+1)/(2sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \cos^2 48^\circ - \sin^2 12^\circ \), we can use the trigonometric identity that relates the difference of squares of cosine and sine functions. ### Step-by-step Solution: 1. **Use the identity**: We know that: \[ \cos^2 A - \sin^2 B = \cos(A + B) \cdot \sin(A - B) \] Here, let \( A = 48^\circ \) and \( B = 12^\circ \). 2. **Apply the identity**: Substitute \( A \) and \( B \) into the identity: \[ \cos^2 48^\circ - \sin^2 12^\circ = \cos(48^\circ + 12^\circ) \cdot \sin(48^\circ - 12^\circ) \] 3. **Calculate \( A + B \) and \( A - B \)**: \[ A + B = 48^\circ + 12^\circ = 60^\circ \] \[ A - B = 48^\circ - 12^\circ = 36^\circ \] 4. **Substitute the angles**: Now we substitute these values back into the equation: \[ \cos^2 48^\circ - \sin^2 12^\circ = \cos 60^\circ \cdot \sin 36^\circ \] 5. **Find the values of \( \cos 60^\circ \) and \( \sin 36^\circ \)**: We know that: \[ \cos 60^\circ = \frac{1}{2} \] For \( \sin 36^\circ \), we can use the known value: \[ \sin 36^\circ = \frac{\sqrt{5} - 1}{4} \] 6. **Multiply the values**: Now, substitute these values into the equation: \[ \cos^2 48^\circ - \sin^2 12^\circ = \frac{1}{2} \cdot \frac{\sqrt{5} - 1}{4} \] \[ = \frac{\sqrt{5} - 1}{8} \] ### Final Result: Thus, the value of \( \cos^2 48^\circ - \sin^2 12^\circ \) is: \[ \frac{\sqrt{5} - 1}{8} \]

To find the value of \( \cos^2 48^\circ - \sin^2 12^\circ \), we can use the trigonometric identity that relates the difference of squares of cosine and sine functions. ### Step-by-step Solution: 1. **Use the identity**: We know that: \[ \cos^2 A - \sin^2 B = \cos(A + B) \cdot \sin(A - B) ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|10 Videos
  • STRAIGHT LINES

    NCERT EXEMPLAR ENGLISH|Exercise MATCHING THE COLUMN|3 Videos

Similar Questions

Explore conceptually related problems

Find the value of (cos^(2)66^(@)-sin^(2)6^(@))(cos^(2)48^(@)-sin^(2)12^(@)) .

Find the value of (cos48^@-sin42^@)

Prove that: cos^(2)48^(@)-sin^(2)12^(@)=(sqrt(5)+1)/(8)

The value of cos^(-1)(cos 12)-sin^(-1)(sin14) is -2 b. 8pi-26 c. 4pi+2 none of these

Find the value of ((cos1^(@)+sin1^(@))(cos2^(@)+sin2^(@))(cos3^(@)+sin3^(@))...(cos 45^@sin45^@))/( cos1^(@)cos2^(@)cos3^(@)...cos45^(@))

The value of (2sin40^(@).sin50^(@).tan10^(@))/(cos 80^(@)) is

cos^2 48^0-sin^2 12^0 is equal to

The value of sin12^(@)sin24^(@)sin48^(@)sin84^(@), is

The value of cos12^(@)cos24^(@)cos36^(@)cos48^(@)cos72^(@)cos84^(@), is

The value of 2 cos10^(@)+sin 100^(@)+sin 1000^(@)+sin 10000^(@) is