Home
Class 11
MATHS
If tanalpha =(1)/(7) and tanbeta =(1)/(3...

If `tanalpha =(1)/(7) and tanbeta =(1)/(3) , then, cos2alpha` is equal to

A

`sin2beta`

B

`sin4beta`

C

`sin2beta`

D

`cos2beta`

Text Solution

AI Generated Solution

The correct Answer is:
To find \( \cos 2\alpha \) given that \( \tan \alpha = \frac{1}{7} \) and \( \tan \beta = \frac{1}{3} \), we can follow these steps: ### Step 1: Calculate \( \tan 2\beta \) We will use the double angle formula for tangent: \[ \tan 2\beta = \frac{2 \tan \beta}{1 - \tan^2 \beta} \] Substituting \( \tan \beta = \frac{1}{3} \): \[ \tan 2\beta = \frac{2 \cdot \frac{1}{3}}{1 - \left(\frac{1}{3}\right)^2} \] Calculating the denominator: \[ 1 - \left(\frac{1}{3}\right)^2 = 1 - \frac{1}{9} = \frac{8}{9} \] Thus, \[ \tan 2\beta = \frac{\frac{2}{3}}{\frac{8}{9}} = \frac{2}{3} \cdot \frac{9}{8} = \frac{3}{4} \] ### Step 2: Calculate \( \tan(\alpha + 2\beta) \) Using the formula for the tangent of a sum: \[ \tan(\alpha + 2\beta) = \frac{\tan \alpha + \tan 2\beta}{1 - \tan \alpha \tan 2\beta} \] Substituting \( \tan \alpha = \frac{1}{7} \) and \( \tan 2\beta = \frac{3}{4} \): \[ \tan(\alpha + 2\beta) = \frac{\frac{1}{7} + \frac{3}{4}}{1 - \left(\frac{1}{7} \cdot \frac{3}{4}\right)} \] Finding a common denominator for the numerator: \[ \frac{1}{7} + \frac{3}{4} = \frac{4}{28} + \frac{21}{28} = \frac{25}{28} \] Calculating the denominator: \[ 1 - \left(\frac{1}{7} \cdot \frac{3}{4}\right) = 1 - \frac{3}{28} = \frac{28 - 3}{28} = \frac{25}{28} \] Thus, \[ \tan(\alpha + 2\beta) = \frac{\frac{25}{28}}{\frac{25}{28}} = 1 \] ### Step 3: Relate \( \tan(\alpha + 2\beta) \) to angles Since \( \tan(\alpha + 2\beta) = 1 \), we can express this as: \[ \alpha + 2\beta = \frac{\pi}{4} \] ### Step 4: Solve for \( \alpha \) Rearranging gives: \[ \alpha = \frac{\pi}{4} - 2\beta \] ### Step 5: Find \( \cos 2\alpha \) Using the cosine double angle identity: \[ \cos 2\alpha = \cos\left(2\left(\frac{\pi}{4} - 2\beta\right)\right) = \cos\left(\frac{\pi}{2} - 4\beta\right) \] Using the co-function identity: \[ \cos\left(\frac{\pi}{2} - \theta\right) = \sin \theta \] Thus, \[ \cos 2\alpha = \sin 4\beta \] ### Final Answer Therefore, \( \cos 2\alpha = \sin 4\beta \). ---

To find \( \cos 2\alpha \) given that \( \tan \alpha = \frac{1}{7} \) and \( \tan \beta = \frac{1}{3} \), we can follow these steps: ### Step 1: Calculate \( \tan 2\beta \) We will use the double angle formula for tangent: \[ \tan 2\beta = \frac{2 \tan \beta}{1 - \tan^2 \beta} \] Substituting \( \tan \beta = \frac{1}{3} \): ...
Promotional Banner

Topper's Solved these Questions

  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|7 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|9 Videos
  • TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|10 Videos
  • STRAIGHT LINES

    NCERT EXEMPLAR ENGLISH|Exercise MATCHING THE COLUMN|3 Videos

Similar Questions

Explore conceptually related problems

If cosalpha=1/2(x+1/x) cosbeta=1/2(y+1/y) then cos(alpha-beta) is equal to

From the top of a 96 m tower, the angles of depression of two cars, on the same side of the tower are alpha" and "beta respectively. If tanalpha=1/4" and "tanbeta=1/7 , then find the distance between two cars.

If tanalpha=m/(m+1) and tanbeta=1/(2m+1) . Find the possible values of (alpha+beta)

If tanalpha=m/(m+1) and tanbeta=1/(2m+1) . Find the possible values of tan(alpha+beta)

If tanalpha=1/(1+2^(-x)) and tanbeta=1/(1+2^(x+1)), then write the value of alpha+beta lying in the interval (0,pi//2) .

If (1+tanalpha)(1+tan4alpha)=2,alpha in (0,pi/(16)), then alpha is equal to (a) pi/(20) (b) pi/(30) (c) pi/(40) (d) pi/(60)

If (pi)/(2)lt alpha lt (3pi)/(4) , then sqrt(2tan alpha+(1)/(cos^(2)alpha)) is equal to

If cos alpha=(2cos beta-1)/(2-cos beta) then tan (alpha/2) is equal to

If 0 < alpha < pi/6 and sin alpha + cos alpha =sqrt(7 )/2, then tan alpha/2 is equal to

If alpha = cos^(-1)((3)/(5)), beta = tan ^(-1)((1)/(3)) , where 0 lt alpha, beta lt (pi)/(2) , then alpha - beta is equal to

NCERT EXEMPLAR ENGLISH-TRIGONOMETRIC FUNCTIONS -OBJECTIVE TYPE QUESTIONS
  1. The minimum of 3cosx +4sin x+8 is

    Text Solution

    |

  2. tan 3A-tan 2A-tan A= is equal to

    Text Solution

    |

  3. The value of sin(45^(@)+theta)-cos(45^(@)-theta) is

    Text Solution

    |

  4. The value of cot((pi)/(4)+theta)cot((pi)/(4)-theta) is

    Text Solution

    |

  5. cos2thetacos2phi+sin^2(theta-phi)-sin^2(theta+phi)=

    Text Solution

    |

  6. The value of cos12^@+cos84^@+cos156^@+cos132^@ is

    Text Solution

    |

  7. If tanA=(1)/(2) and tanB=(1)/(3), then tan(2A+B) is equal to

    Text Solution

    |

  8. The value of sin""(pi)/(10)sin""(13pi)/(10) is

    Text Solution

    |

  9. The value of sin50^(@)-sin70^(@)+sin10^(@) is

    Text Solution

    |

  10. If sintheta+costheta=1, then the value of sin2theta is

    Text Solution

    |

  11. If alpha+beta=pi/4 then (1+tan alpha)(1+tan beta)=

    Text Solution

    |

  12. If sintheta=(-4)/(5) and theta lies in third quadrant, then the value...

    Text Solution

    |

  13. The number of solutions of equation tanx+secx=2cosx lying in the inter...

    Text Solution

    |

  14. The value of sin(pi/18)+sin(pi/9)+sin((2pi)/9)+sin((5pi)/18) is

    Text Solution

    |

  15. If A lies in the second quadrant and 3tanA + 4=0, then find the value ...

    Text Solution

    |

  16. The value of cos^(2)48^(@)-sin^(2)12^(@) is

    Text Solution

    |

  17. If tanalpha =(1)/(7) and tanbeta =(1)/(3) , then, cos2alpha is equal ...

    Text Solution

    |

  18. If tantheta=(a)/(b), then bcos2theta+asin2theta is equal to

    Text Solution

    |

  19. If for real values of x, costheta=x+(1)/(x), then

    Text Solution

    |

  20. The value of (sin50^(@))/(sin130^(@)) is ….. .

    Text Solution

    |