Home
Class 11
MATHS
Evaluate lim(xto 1//2) ((4x^(2)-1))/((2x...

Evaluate `lim_(xto 1//2) ((4x^(2)-1))/((2x-1))`.

A

2

B

3

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \( \lim_{x \to \frac{1}{2}} \frac{4x^2 - 1}{2x - 1} \), we can follow these steps: ### Step 1: Substitute \( x = \frac{1}{2} \) First, we substitute \( x = \frac{1}{2} \) into the expression to check if it results in an indeterminate form. \[ 4\left(\frac{1}{2}\right)^2 - 1 = 4 \cdot \frac{1}{4} - 1 = 1 - 1 = 0 \] \[ 2\left(\frac{1}{2}\right) - 1 = 1 - 1 = 0 \] Since both the numerator and denominator evaluate to 0, we have the indeterminate form \( \frac{0}{0} \). **Hint:** When you encounter \( \frac{0}{0} \), it indicates that further simplification or factorization is needed. ### Step 2: Factor the numerator Next, we factor the numerator \( 4x^2 - 1 \). This expression can be recognized as a difference of squares: \[ 4x^2 - 1 = (2x)^2 - 1^2 = (2x - 1)(2x + 1) \] **Hint:** Remember that the difference of squares can be factored as \( a^2 - b^2 = (a - b)(a + b) \). ### Step 3: Rewrite the limit Now we can rewrite the limit using the factorization: \[ \lim_{x \to \frac{1}{2}} \frac{(2x - 1)(2x + 1)}{2x - 1} \] **Hint:** When you factor out common terms, it can help eliminate the indeterminate form. ### Step 4: Cancel the common factor We can cancel the common factor \( 2x - 1 \) from the numerator and denominator: \[ \lim_{x \to \frac{1}{2}} (2x + 1) \] **Hint:** Always check if you can simplify the expression before substituting values. ### Step 5: Substitute again Now we can substitute \( x = \frac{1}{2} \) into the simplified expression: \[ 2\left(\frac{1}{2}\right) + 1 = 1 + 1 = 2 \] **Hint:** After simplification, substituting the limit point should yield a definite value. ### Final Answer Thus, the limit evaluates to: \[ \lim_{x \to \frac{1}{2}} \frac{4x^2 - 1}{2x - 1} = 2 \]

To evaluate the limit \( \lim_{x \to \frac{1}{2}} \frac{4x^2 - 1}{2x - 1} \), we can follow these steps: ### Step 1: Substitute \( x = \frac{1}{2} \) First, we substitute \( x = \frac{1}{2} \) into the expression to check if it results in an indeterminate form. \[ 4\left(\frac{1}{2}\right)^2 - 1 = 4 \cdot \frac{1}{4} - 1 = 1 - 1 = 0 \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|11 Videos
  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|23 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|16 Videos
  • LINEAR INEQUALITIES

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|14 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto-2^(+)) (x^(2)-1)/(2x+4).

Evaluate lim_(xto2) sin(e^(x-2)-1)/(log(x-1))

Evaluate lim_(xto1) ((2)/(1-x^(2))-(1)/(1-x)).

Evaluate the following limits : lim_( x to 1/2) (4x^(2)-1)/(2x-1)

Evaluate Lim_(xto 2) (x^(5)-32)/(x^(2)-4)

Evaluate lim_(xto0) ((1)/(x^(2))-(1)/(sin^(2)x)).

Evaluate lim_(xto0) (1-cos2x)/x^(2)

Evaluate lim_(xto0) (2^(x)-1)/(sqrt(1+x)-1).

Evaluate the following limits : Lim_(x to 1/2)(4x^(2)-1)/(2x-1)

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).