Home
Class 11
MATHS
Evaluate lim(xto0) ((x+2)^(1//3)-2^(1//3...

Evaluate `lim_(xto0) ((x+2)^(1//3)-2^(1//3))/(x)`

A

`1/(3)(2)^(2//3)`

B

`1/(3.(2)^(2//3))`

C

`1/(3)`

D

none of the above

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{(x+2)^{1/3} - 2^{1/3}}{x}, \] we first check the form of the limit by substituting \(x = 0\): \[ \frac{(0 + 2)^{1/3} - 2^{1/3}}{0} = \frac{2^{1/3} - 2^{1/3}}{0} = \frac{0}{0}. \] This is an indeterminate form, so we need to manipulate the expression to resolve it. ### Step 1: Rewrite the limit We can rewrite the limit as: \[ \lim_{x \to 0} \frac{(x + 2)^{1/3} - 2^{1/3}}{x} = \lim_{x \to 0} \frac{(x + 2)^{1/3} - 2^{1/3}}{(x + 2) - 2} \cdot \frac{(x + 2) - 2}{x}. \] ### Step 2: Apply the standard limit result Now we can apply the standard limit result: \[ \lim_{x \to a} \frac{f(x) - f(a)}{x - a} = f'(a), \] where \(f(x) = (x + 2)^{1/3}\) and \(a = 2\). We need to find \(f'(x)\). ### Step 3: Differentiate \(f(x)\) Using the power rule, we differentiate \(f(x)\): \[ f'(x) = \frac{1}{3}(x + 2)^{-2/3}. \] ### Step 4: Evaluate the derivative at \(x = 2\) Now we evaluate \(f'(2)\): \[ f'(2) = \frac{1}{3}(2 + 2)^{-2/3} = \frac{1}{3}(4)^{-2/3} = \frac{1}{3} \cdot \frac{1}{4^{2/3}}. \] Since \(4^{2/3} = (2^2)^{2/3} = 2^{4/3}\), we have: \[ f'(2) = \frac{1}{3 \cdot 2^{4/3}}. \] ### Step 5: Simplify the expression Thus, we can write: \[ \lim_{x \to 0} \frac{(x + 2)^{1/3} - 2^{1/3}}{x} = f'(2) = \frac{1}{3 \cdot 2^{4/3}} = \frac{1}{3} \cdot 2^{-4/3} = \frac{1}{3 \cdot 2^{4/3}}. \] ### Final Answer So, the limit evaluates to: \[ \frac{1}{3 \cdot 2^{4/3}}. \]

To evaluate the limit \[ \lim_{x \to 0} \frac{(x+2)^{1/3} - 2^{1/3}}{x}, \] we first check the form of the limit by substituting \(x = 0\): ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|11 Videos
  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|23 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|16 Videos
  • LINEAR INEQUALITIES

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|14 Videos

Similar Questions

Explore conceptually related problems

Evaluate : lim_(xto0) (1+ax)^(1//x)

Evaluate lim_(xto0) ((1+x)^(1//x)-e+(1)/(2)es)/(x^(2)) .

Evaluate lim_(xto0) (1-cos2x)/x^(2)

Evaluate : lim_(xto 0 ) ((x+2)/(x+1))^(x+3)

Evaluate lim_(xto0) (sinx-x)/(x^(3)).

Evaluate lim_(xto0)(3^(2x)-2^(3x))/(x).

Evalaute lim_(xto0) (x2^(x)-x)/(1-cosx)

Evaluate lim_(xto0)x^(3)"cos"2/x .

Evaluate lim_(xto0) (10^(x)-2^(x)-5^(x)+1)/(xtanx).

Evaluate: lim_(xto0)(tan8x)/(sin3x)