Home
Class 11
MATHS
Evaluate lim(x to 0) ((1+x)^(6)-1)/((1+x...

Evaluate `lim_(x to 0) ((1+x)^(6)-1)/((1+x)^(2)-1)`.

A

`1`

B

`2`

C

`3`

D

`4`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to 0} \frac{(1+x)^6 - 1}{(1+x)^2 - 1}, \] we will follow these steps: ### Step 1: Substitute the limit directly First, let's check what happens when we substitute \( x = 0 \): \[ \frac{(1+0)^6 - 1}{(1+0)^2 - 1} = \frac{1 - 1}{1 - 1} = \frac{0}{0}. \] Since we have an indeterminate form \( \frac{0}{0} \), we need to manipulate the expression further. ### Step 2: Use L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that if we have \( \frac{0}{0} \), we can take the derivative of the numerator and the derivative of the denominator: - **Numerator**: \( f(x) = (1+x)^6 - 1 \) - **Denominator**: \( g(x) = (1+x)^2 - 1 \) Now, we find the derivatives: 1. Derivative of the numerator: \[ f'(x) = 6(1+x)^5 \] 2. Derivative of the denominator: \[ g'(x) = 2(1+x) \] ### Step 3: Apply L'Hôpital's Rule Now we can apply L'Hôpital's Rule: \[ \lim_{x \to 0} \frac{f'(x)}{g'(x)} = \lim_{x \to 0} \frac{6(1+x)^5}{2(1+x)}. \] ### Step 4: Simplify the expression We can simplify this limit: \[ = \lim_{x \to 0} \frac{6(1+x)^5}{2(1+x)} = \lim_{x \to 0} \frac{6(1+x)^4}{2} = \lim_{x \to 0} 3(1+x)^4. \] ### Step 5: Evaluate the limit Now substituting \( x = 0 \): \[ = 3(1+0)^4 = 3 \cdot 1 = 3. \] Thus, the final answer is: \[ \lim_{x \to 0} \frac{(1+x)^6 - 1}{(1+x)^2 - 1} = 3. \]

To evaluate the limit \[ \lim_{x \to 0} \frac{(1+x)^6 - 1}{(1+x)^2 - 1}, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|11 Videos
  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|23 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|16 Videos
  • LINEAR INEQUALITIES

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|14 Videos

Similar Questions

Explore conceptually related problems

Evaluate Lim_(xto0) ((1+x)^(6)-1)/((1+x)^(2)-1)

Evaluate lim_(x to 0) (2^(x)-1)/((1+x)^(1//2)-1)

Evaluate : lim_(x to 0) (e^(x)-1)/x

Evaluate : lim_(x to 1) (x^(m)-1)/(x^(n)-1)

Evaluate the following limits . Lim_(x to 0) ((1+x)^(6)-1)/((1+x)^(2)-1)

Evaluate lim_(x to 1) (x^(3) - 1)/(x - 1)

Evaluate : lim_(x to 0) (e^(cos x)-1)/(cos x)

Evaluate lim_(xto0) (1-cos2x)/x^(2)

Evaluate : lim_(x to 0 ) ((1+6x^(2))/(1+4x^(2)))^(1/(x^(2)))

Evaluate lim_(xto0) (e^(x)-1-x)/(x^(2)).