Home
Class 11
MATHS
Find the value of n, if lim(xto2) (x^(n)...

Find the value of n, if `lim_(xto2) (x^(n)-2^(n))/(x-2)=80`, `n in N`.

A

`3`

B

`5`

C

`4`

D

`6`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to find the value of \( n \) such that: \[ \lim_{x \to 2} \frac{x^n - 2^n}{x - 2} = 80 \] ### Step 1: Recognize the limit form We can use the standard limit result: \[ \lim_{x \to a} \frac{x^n - a^n}{x - a} = n \cdot a^{n-1} \] In our case, \( a = 2 \). ### Step 2: Apply the standard limit result Substituting \( a = 2 \) into the standard limit formula, we have: \[ \lim_{x \to 2} \frac{x^n - 2^n}{x - 2} = n \cdot 2^{n-1} \] ### Step 3: Set the limit equal to 80 According to the problem, this limit equals 80: \[ n \cdot 2^{n-1} = 80 \] ### Step 4: Simplify the equation We can express 80 in terms of powers of 2: \[ 80 = 5 \cdot 16 = 5 \cdot 2^4 \] Thus, we rewrite the equation: \[ n \cdot 2^{n-1} = 5 \cdot 2^4 \] ### Step 5: Equate the powers of 2 From the equation \( n \cdot 2^{n-1} = 5 \cdot 2^4 \), we can compare coefficients: 1. The coefficient \( n \) must equal 5. 2. The powers of 2 give us \( n - 1 = 4 \). ### Step 6: Solve for \( n \) From \( n - 1 = 4 \): \[ n = 5 \] ### Conclusion Thus, the value of \( n \) is: \[ \boxed{5} \]

To solve the limit problem, we need to find the value of \( n \) such that: \[ \lim_{x \to 2} \frac{x^n - 2^n}{x - 2} = 80 \] ### Step 1: Recognize the limit form We can use the standard limit result: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|11 Videos
  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|23 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|16 Videos
  • LINEAR INEQUALITIES

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|14 Videos

Similar Questions

Explore conceptually related problems

If lim_(x to 2) (X^(n) - 2^(n))/(x - 2) = 448 and n in N , find n

If lim_(x to 3) (x^(n) - 3^(n))/(x - 3) = 1458 and n in N , find n.

If lim_(x to 3) (X^(n) - 3^(n))/(x - 3) = 405 and n in N Find n

Evaluate lim_(xto1)(x+x^(2)+…….+x^(n)-n)/(x-1)

Find the value of lim_(n->oo) (1+2+3+.......+n)/n^2

If lim_(xto2) (x^(n)-2^(n))/(x-2)=80" and " ninN, " then find the value of n."

Find the values of a if f(x)=("lim")_(n rarr oo)(a x^(2n)+2)/(x^(2n)+a+1) is continuous at x=1.

lim_(n->oo)sin(x/2^n)/(x/2^n)

If Lim_( x to 2) (x^(n)-2^(n))/(x-2)=80 and if n is a positive integar , find n .

The value of lim_(xto0)((1^(x)+2^(x)+3^(x)+…………+n^(x))/n)^(a//x) is