Home
Class 11
MATHS
Given, lim(xto0) (sin3x)/(sin7x)....

Given, `lim_(xto0) (sin3x)/(sin7x)`.

A

`3/5`

B

`3/7`

C

`1/5`

D

`7/3`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\sin 3x}{\sin 7x} \), we can follow these steps: ### Step 1: Rewrite the Limit We start with the limit expression: \[ \lim_{x \to 0} \frac{\sin 3x}{\sin 7x} \] ### Step 2: Introduce Multiplication and Division by Constants To facilitate the limit calculation, we can multiply and divide by \(3x\) and \(7x\): \[ \lim_{x \to 0} \frac{\sin 3x}{\sin 7x} = \lim_{x \to 0} \frac{\sin 3x}{3x} \cdot \frac{3x}{7x} \cdot \frac{7x}{\sin 7x} \] This can be rearranged as: \[ = \lim_{x \to 0} \left( \frac{\sin 3x}{3x} \cdot \frac{3}{7} \cdot \frac{7x}{\sin 7x} \right) \] ### Step 3: Separate the Limits We can separate the limit into three parts: \[ = \frac{3}{7} \cdot \lim_{x \to 0} \frac{\sin 3x}{3x} \cdot \lim_{x \to 0} \frac{7x}{\sin 7x} \] ### Step 4: Apply the Standard Limit We know from standard limit results that: \[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \] Thus, we can apply this result: - For \( \lim_{x \to 0} \frac{\sin 3x}{3x} \), as \( x \to 0 \), \( 3x \to 0 \), so this limit approaches \(1\). - For \( \lim_{x \to 0} \frac{7x}{\sin 7x} \), as \( x \to 0 \), \( 7x \to 0 \), so this limit also approaches \(1\). ### Step 5: Combine the Results Putting it all together: \[ = \frac{3}{7} \cdot 1 \cdot 1 = \frac{3}{7} \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 0} \frac{\sin 3x}{\sin 7x} = \frac{3}{7} \] ---

To solve the limit \( \lim_{x \to 0} \frac{\sin 3x}{\sin 7x} \), we can follow these steps: ### Step 1: Rewrite the Limit We start with the limit expression: \[ \lim_{x \to 0} \frac{\sin 3x}{\sin 7x} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|11 Videos
  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|23 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|16 Videos
  • LINEAR INEQUALITIES

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|14 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(x to 0) ("sin"5x)/("sin"7x)

Evaluate, lim_(xto0) (sin2x+3x)/(2x+tan3x) .

Evaluate lim_(xto0) (tan2x-x)/(3x-sinx).

Find the limits of the following: (i)lim_(xto0) (sin3x)/(x)" "(ii)lim_(xto0) (sin7x)/(sin4x)" "(iii)lim_(xto0) (1-cos^(2)x)/(x^(2))

Evaluate: lim_(xto0)(tan8x)/(sin3x)

Evaluate, lim_(xto0) (sinx-2sin3x+sin5x)/(x)

Evaluate lim_(xto0) (sinx-x)/(x^(3)).

Evaluate the following limits : Lim_( xto0) (x sin 5x)/(sin^(2) 4x)

Evaluate lim_(xto0) (2sinx-sin2x)/(x^(3))

Evalute [lim_(xto0) (sin^(-1)x)/(x)]=1 , where [*] represets the greatest interger function.