Home
Class 11
MATHS
Evaluate, lim(xto(pi//4)) (sinx-cosx)/(x...

Evaluate, `lim_(xto(pi//4)) (sinx-cosx)/(x-pi/4)`

A

`sqrt(2)`

B

`2`

C

`0`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to \frac{\pi}{4}} \frac{\sin x - \cos x}{x - \frac{\pi}{4}}, \] we start by substituting \( x = \frac{\pi}{4} \) into the expression to check for indeterminate forms. 1. **Substituting \( x = \frac{\pi}{4} \)**: \[ \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}, \quad \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}}. \] Thus, the numerator becomes: \[ \sin\left(\frac{\pi}{4}\right) - \cos\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} - \frac{1}{\sqrt{2}} = 0. \] The denominator is: \[ \frac{\pi}{4} - \frac{\pi}{4} = 0. \] Therefore, we have the indeterminate form \( \frac{0}{0} \). 2. **Applying L'Hôpital's Rule**: Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to c} \frac{f(x)}{g(x)} = \lim_{x \to c} \frac{f'(x)}{g'(x)} \] if the limit on the right side exists. We need to find the derivatives of the numerator and the denominator: - Derivative of the numerator \( \sin x - \cos x \): \[ f'(x) = \cos x + \sin x. \] - Derivative of the denominator \( x - \frac{\pi}{4} \): \[ g'(x) = 1. \] 3. **Re-evaluating the limit**: Now we can rewrite the limit: \[ \lim_{x \to \frac{\pi}{4}} \frac{\cos x + \sin x}{1}. \] Substituting \( x = \frac{\pi}{4} \): \[ \cos\left(\frac{\pi}{4}\right) + \sin\left(\frac{\pi}{4}\right) = \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{2}} = \frac{2}{\sqrt{2}} = \sqrt{2}. \] 4. **Final Result**: Thus, the limit evaluates to: \[ \lim_{x \to \frac{\pi}{4}} \frac{\sin x - \cos x}{x - \frac{\pi}{4}} = \sqrt{2}. \]

To evaluate the limit \[ \lim_{x \to \frac{\pi}{4}} \frac{\sin x - \cos x}{x - \frac{\pi}{4}}, \] we start by substituting \( x = \frac{\pi}{4} \) into the expression to check for indeterminate forms. ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|11 Videos
  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|23 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|16 Videos
  • LINEAR INEQUALITIES

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|14 Videos

Similar Questions

Explore conceptually related problems

Evaluate, lim_(xto(pi//6)) (sqrt(3)sinx-cosx)/(x-pi/6)

Evaluate: lim_(xrarr(pi)/(4))(sinx-cos x)/(x-(pi)/(4))= ?

Evaluate lim_(x to (pi)/(4)) ("sin" x - cos x)/(x - (pi)/(4))

Evaluate: lim_(xrarr(pi)/(4)) (sin x -cos x)/(x-(pi)/(4))

Evaluate lim_(xto0^(+))(sinx)^(x)

Evaluate lim_(xto pi//2) tanxlogsinx

Evaluate lim_(xto(pi)/(4)) (1-sin2x)/(1+cos4x).

Evaluate lim_(x to (pi)/(4)) (1 - tanx)/(x - (pi)/(4))

lim_(x->(pi)/6)(3sinx-sqrt(3)cosx)/(6x-pi)

Evaluate lim_(xto pi//2) (sinx-(sinx)^(sinx))/(1-sinx+log_(e)sinx) .