Home
Class 11
MATHS
Evaluate, lim(xto(pi//6)) (cot^(2)x-3)/(...

Evaluate, `lim_(xto(pi//6)) (cot^(2)x-3)/("cosec"x-2)`

A

`2`

B

`3`

C

`4`

D

`5`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the limit \[ \lim_{x \to \frac{\pi}{6}} \frac{\cot^2 x - 3}{\csc x - 2}, \] we will follow these steps: ### Step 1: Substitute \( x = \frac{\pi}{6} \) First, we need to check if substituting \( x = \frac{\pi}{6} \) gives us an indeterminate form. \[ \cot\left(\frac{\pi}{6}\right) = \frac{\cos\left(\frac{\pi}{6}\right)}{\sin\left(\frac{\pi}{6}\right)} = \frac{\frac{\sqrt{3}}{2}}{\frac{1}{2}} = \sqrt{3} \] Thus, \[ \cot^2\left(\frac{\pi}{6}\right) = (\sqrt{3})^2 = 3. \] Now substitute into the limit: \[ \cot^2\left(\frac{\pi}{6}\right) - 3 = 3 - 3 = 0, \] and \[ \csc\left(\frac{\pi}{6}\right) = \frac{1}{\sin\left(\frac{\pi}{6}\right)} = \frac{1}{\frac{1}{2}} = 2. \] Thus, \[ \csc\left(\frac{\pi}{6}\right) - 2 = 2 - 2 = 0. \] So we have a \( \frac{0}{0} \) indeterminate form. ### Step 2: Use Trigonometric Identity To resolve the indeterminate form, we can use the identity: \[ \cot^2 x = \csc^2 x - 1. \] Substituting this into our limit gives: \[ \cot^2 x - 3 = \csc^2 x - 1 - 3 = \csc^2 x - 4. \] Thus, we rewrite the limit as: \[ \lim_{x \to \frac{\pi}{6}} \frac{\csc^2 x - 4}{\csc x - 2}. \] ### Step 3: Factor the Numerator Notice that \( \csc^2 x - 4 \) can be factored as a difference of squares: \[ \csc^2 x - 4 = (\csc x - 2)(\csc x + 2). \] So we can rewrite the limit as: \[ \lim_{x \to \frac{\pi}{6}} \frac{(\csc x - 2)(\csc x + 2)}{\csc x - 2}. \] ### Step 4: Cancel Common Factors Now we can cancel \( \csc x - 2 \) from the numerator and the denominator (as long as \( x \neq \frac{\pi}{6} \)): \[ \lim_{x \to \frac{\pi}{6}} (\csc x + 2). \] ### Step 5: Substitute Again Now we can substitute \( x = \frac{\pi}{6} \): \[ \csc\left(\frac{\pi}{6}\right) + 2 = 2 + 2 = 4. \] ### Final Answer Thus, the limit evaluates to: \[ \boxed{4}. \]

To evaluate the limit \[ \lim_{x \to \frac{\pi}{6}} \frac{\cot^2 x - 3}{\csc x - 2}, \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|11 Videos
  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|23 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|16 Videos
  • LINEAR INEQUALITIES

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|14 Videos

Similar Questions

Explore conceptually related problems

Evaluate lim_(xto pi//4) (1-cot^(3)x)/(2-cotx-cot^(3)x).

Evaluate, lim_(xto(pi//6)) (sqrt(3)sinx-cosx)/(x-pi/6)

Evaluate lim_(xto (pi^(-))/(2)) (cosx)^(cosx).

Evaluate lim_(xto-2^(+)) (x^(2)-1)/(2x+4).

Evaluate lim_(xto0) (1-cos2x)/x^(2)

Evaluate, lim_(xto(pi//4)) (sinx-cosx)/(x-pi/4)

Evaluate lim_(xto(pi)/(4)) (1-sin2x)/(1+cos4x).

Evaluate the following limit: (lim)_(x->pi/6)(cot^2x-3)/(cos e c x-2)

Evaluate lim_(xto3) ((x^(2)-9))/((x-3))

Evaluate lim_(xto0) (cot2x-cosec2x)/(x).