Home
Class 11
MATHS
lim(xrarr0)("cosec"x-cotx)/(x) is equal ...

`lim_(xrarr0)("cosec"x-cotx)/(x)` is equal to

A

`1/2`

B

-1

C

`-1/2`

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{x \to 0} \frac{\csc x - \cot x}{x} \), we will follow these steps: ### Step 1: Rewrite the trigonometric functions We start by rewriting \(\csc x\) and \(\cot x\) in terms of sine and cosine: \[ \csc x = \frac{1}{\sin x}, \quad \cot x = \frac{\cos x}{\sin x} \] Thus, we can rewrite the expression: \[ \csc x - \cot x = \frac{1}{\sin x} - \frac{\cos x}{\sin x} = \frac{1 - \cos x}{\sin x} \] ### Step 2: Substitute into the limit Now, substituting this back into our limit gives: \[ \lim_{x \to 0} \frac{\csc x - \cot x}{x} = \lim_{x \to 0} \frac{1 - \cos x}{x \sin x} \] ### Step 3: Identify the indeterminate form As \(x\) approaches \(0\), both the numerator \(1 - \cos x\) and the denominator \(x \sin x\) approach \(0\). This is an indeterminate form \( \frac{0}{0} \). ### Step 4: Apply L'Hôpital's Rule Since we have an indeterminate form, we can apply L'Hôpital's Rule, which states that: \[ \lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)} \] if the limit on the right exists. We need to differentiate the numerator and denominator. - The derivative of the numerator \(1 - \cos x\) is \(\sin x\). - The derivative of the denominator \(x \sin x\) can be found using the product rule: \[ \frac{d}{dx}(x \sin x) = \sin x + x \cos x \] ### Step 5: Rewrite the limit using derivatives Now we can rewrite our limit: \[ \lim_{x \to 0} \frac{\sin x}{\sin x + x \cos x} \] ### Step 6: Evaluate the limit Now substituting \(x = 0\) into the limit: \[ \lim_{x \to 0} \frac{\sin x}{\sin x + x \cos x} = \frac{\sin(0)}{\sin(0) + 0 \cdot \cos(0)} = \frac{0}{0 + 0} = \frac{0}{0} \] This is still an indeterminate form, so we apply L'Hôpital's Rule again. ### Step 7: Differentiate again - The derivative of \(\sin x\) is \(\cos x\). - The derivative of \(\sin x + x \cos x\) is \(\cos x + (\cos x - x \sin x)\) (using the product rule again). ### Step 8: Rewrite the limit again Now we have: \[ \lim_{x \to 0} \frac{\cos x}{\cos x + \cos x - x \sin x} = \lim_{x \to 0} \frac{\cos x}{2\cos x - x \sin x} \] ### Step 9: Substitute \(x = 0\) Substituting \(x = 0\): \[ \frac{\cos(0)}{2\cos(0) - 0 \cdot \sin(0)} = \frac{1}{2 \cdot 1 - 0} = \frac{1}{2} \] ### Final Answer Thus, the limit is: \[ \lim_{x \to 0} \frac{\csc x - \cot x}{x} = \frac{1}{2} \]

To solve the limit \( \lim_{x \to 0} \frac{\csc x - \cot x}{x} \), we will follow these steps: ### Step 1: Rewrite the trigonometric functions We start by rewriting \(\csc x\) and \(\cot x\) in terms of sine and cosine: \[ \csc x = \frac{1}{\sin x}, \quad \cot x = \frac{\cos x}{\sin x} \] Thus, we can rewrite the expression: ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|4 Videos
  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|11 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|16 Videos
  • LINEAR INEQUALITIES

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|14 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0) (cosecx-cotx)

lim_(xrarr0) (cos ec x -cot x)

The value of lim_(xrarr0)(secx+tanx)^(1/x) is equal to

lim_(xrarr0)x sec x

lim_(xrarr0)(x^(2)cosx)/(1-cosx) is equal to

lim_(xrarr0) (e^(x^(2))-cosx)/(x^2) is equal to

The value of lim_(xrarr0)(cos x+sinx)^((1)/(x)) is equal to to (take e = 2.71)

lim_(xrarr0) (1+x+x^2-e^x)/(x^2) is equal to

lim_(xrarr0) (a^x-b^x)/(e^x-1) is equal to

lim_(xrarr0)(tan2x-x)/(3x-sinx) is equal to

NCERT EXEMPLAR ENGLISH-LIMITS AND DERIVATIVES -OBJECTIVE TYPE QUESTIONS
  1. lim(xrarr1)(x^(m)-1)/(x^(n)-1) is equal to

    Text Solution

    |

  2. lim(thetato0)(1-cos4theta)/(1-cos6theta) is equal to

    Text Solution

    |

  3. lim(xrarr0)("cosec"x-cotx)/(x) is equal to

    Text Solution

    |

  4. lim(xrarr0)(sinx)/(sqrt(x+1)-sqrt(1-x)) is equal to

    Text Solution

    |

  5. lim(xrarr(pi//4))(sec^2x-2)/(tanx-1) is

    Text Solution

    |

  6. lim(x->1)[(2x-3)(sqrtx-1)]/[2x^2+x-3]

    Text Solution

    |

  7. If f(x) = { sin[x]/([x]),[x] != 0 ; 0, [x] = 0} , Where[.] denotes the...

    Text Solution

    |

  8. lim(xrarr0)(|sinx|)/(x) is equal to

    Text Solution

    |

  9. If f(x) ={x^2-1, 0 lt x lt 2 , 2x+3 , 2 le x lt 3then the quadratic eq...

    Text Solution

    |

  10. lim(xrarr0)(tan2x-x)/(3x-sinx) is equal to

    Text Solution

    |

  11. if f(x) =x-[x], in R, then f^(')(1/2) is equal to

    Text Solution

    |

  12. if y=sqrt(x) + 1/sqrt(x), then (dy)/(dx) at x=1 is equal to

    Text Solution

    |

  13. If f(x) =(x-4)/(2sqrt(x)), then f^(')(1) is equal to

    Text Solution

    |

  14. if y=(1+1/x^(2))/(1-1/(x)^(2)),then (dy)/(dx) is equal to

    Text Solution

    |

  15. if y=(sinx+cosx)/(sinx-cosx), then (dy)/(dx) at x=0 is equal to

    Text Solution

    |

  16. if y=(sin(x+9))/(cosx), then (dy)/(dx) at x=0 is equal to

    Text Solution

    |

  17. If f(x)=1+x+(x^2)/2++(x^(100))/(100), then f^(prime)(1) is equal to

    Text Solution

    |

  18. Find the derivative of (x^(n)-a^(n))/(x-a) at x=a for some constant a.

    Text Solution

    |

  19. If f(x)=x^(100)+x^(99)++x+1, then f^(prime)(1) is equal to

    Text Solution

    |

  20. If f(x)=1-x+x^2-x^3+......-x^(99)+x^(100) then f^(prime)(1) equals

    Text Solution

    |