Home
Class 11
MATHS
If f(x) = { sin[x]/([x]),[x] != 0 ; 0, [...

If f(x) = { `sin[x]/([x]),[x] != 0 ; 0, [x] = 0}` , Where[.] denotes the greatest integer function, then `lim_(x rarr 0) f(x)` is equal to

A

1

B

0

C

`-1`

D

Does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem given the function \( f(x) = \frac{\sin[\cdot]}{[\cdot]} \) where \( [\cdot] \) denotes the greatest integer function, we need to find \( \lim_{x \to 0} f(x) \). ### Step-by-Step Solution: 1. **Understanding the Function**: - The function is defined as: \[ f(x) = \begin{cases} \frac{\sin([\cdot])}{[\cdot]} & \text{if } [x] \neq 0 \\ 0 & \text{if } [x] = 0 \end{cases} \] - The greatest integer function \( [x] \) gives the largest integer less than or equal to \( x \). 2. **Finding Left-Hand Limit**: - We need to evaluate \( \lim_{x \to 0^-} f(x) \). - When \( x \) is approaching \( 0 \) from the left (i.e., \( x < 0 \)), \( [x] = -1 \). - Therefore, for \( x < 0 \): \[ f(x) = \frac{\sin(-1)}{-1} = \frac{-\sin(1)}{-1} = \sin(1) \] - Thus, the left-hand limit is: \[ \lim_{x \to 0^-} f(x) = \sin(1) \] 3. **Finding Right-Hand Limit**: - Now, we evaluate \( \lim_{x \to 0^+} f(x) \). - When \( x \) is approaching \( 0 \) from the right (i.e., \( x > 0 \)), \( [x] = 0 \). - Therefore, for \( x > 0 \): \[ f(x) = 0 \] - Thus, the right-hand limit is: \[ \lim_{x \to 0^+} f(x) = 0 \] 4. **Comparing the Limits**: - We have: \[ \lim_{x \to 0^-} f(x) = \sin(1) \quad \text{and} \quad \lim_{x \to 0^+} f(x) = 0 \] - Since the left-hand limit \( \sin(1) \) is not equal to the right-hand limit \( 0 \), the overall limit does not exist. 5. **Conclusion**: - Therefore, we conclude that: \[ \lim_{x \to 0} f(x) \text{ does not exist.} \]

To solve the limit problem given the function \( f(x) = \frac{\sin[\cdot]}{[\cdot]} \) where \( [\cdot] \) denotes the greatest integer function, we need to find \( \lim_{x \to 0} f(x) \). ### Step-by-Step Solution: 1. **Understanding the Function**: - The function is defined as: \[ f(x) = ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|4 Videos
  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|11 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|16 Videos
  • LINEAR INEQUALITIES

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|14 Videos

Similar Questions

Explore conceptually related problems

If [.] denotes the greatest integer function , then lim_(xrarr0) sin[-sec^2x]/(1+[cos x ]) is equal to

Let f(x) = x(-1)^([1//x]); x != 0 where [.] denotes greatest integer function, then lim_(x rarr 0) f (x) is :

If f(x)={((sin([x]+x))/([x]+x),x!=0),(1,x=0):} when [.] denotes the greatest integer function, then:

if f(x) ={{:(2x-[x]+ xsin (x-[x]),,x ne 0) ,( 0,, x=0):} where [.] denotes the greatest integer function then

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

If f(x)=e^(sin(x-[x])cospix) , where [x] denotes the greatest integer function, then f(x) is

Given lim_(x to 0)(f(x))/(x^(2))=2 , where [.] denotes the greatest integer function, then

Let f(x)={(x(e^([x]+x)-4)/([x]+|x|), , x!=0),(3, , x=0):} Where [ ] denotes the greatest integer function. Then,

f(x) = 1 + [cosx]x in 0 leq x leq pi/2 (where [.] denotes greatest integer function) then

NCERT EXEMPLAR ENGLISH-LIMITS AND DERIVATIVES -OBJECTIVE TYPE QUESTIONS
  1. lim(xrarr1)(x^(m)-1)/(x^(n)-1) is equal to

    Text Solution

    |

  2. lim(thetato0)(1-cos4theta)/(1-cos6theta) is equal to

    Text Solution

    |

  3. lim(xrarr0)("cosec"x-cotx)/(x) is equal to

    Text Solution

    |

  4. lim(xrarr0)(sinx)/(sqrt(x+1)-sqrt(1-x)) is equal to

    Text Solution

    |

  5. lim(xrarr(pi//4))(sec^2x-2)/(tanx-1) is

    Text Solution

    |

  6. lim(x->1)[(2x-3)(sqrtx-1)]/[2x^2+x-3]

    Text Solution

    |

  7. If f(x) = { sin[x]/([x]),[x] != 0 ; 0, [x] = 0} , Where[.] denotes the...

    Text Solution

    |

  8. lim(xrarr0)(|sinx|)/(x) is equal to

    Text Solution

    |

  9. If f(x) ={x^2-1, 0 lt x lt 2 , 2x+3 , 2 le x lt 3then the quadratic eq...

    Text Solution

    |

  10. lim(xrarr0)(tan2x-x)/(3x-sinx) is equal to

    Text Solution

    |

  11. if f(x) =x-[x], in R, then f^(')(1/2) is equal to

    Text Solution

    |

  12. if y=sqrt(x) + 1/sqrt(x), then (dy)/(dx) at x=1 is equal to

    Text Solution

    |

  13. If f(x) =(x-4)/(2sqrt(x)), then f^(')(1) is equal to

    Text Solution

    |

  14. if y=(1+1/x^(2))/(1-1/(x)^(2)),then (dy)/(dx) is equal to

    Text Solution

    |

  15. if y=(sinx+cosx)/(sinx-cosx), then (dy)/(dx) at x=0 is equal to

    Text Solution

    |

  16. if y=(sin(x+9))/(cosx), then (dy)/(dx) at x=0 is equal to

    Text Solution

    |

  17. If f(x)=1+x+(x^2)/2++(x^(100))/(100), then f^(prime)(1) is equal to

    Text Solution

    |

  18. Find the derivative of (x^(n)-a^(n))/(x-a) at x=a for some constant a.

    Text Solution

    |

  19. If f(x)=x^(100)+x^(99)++x+1, then f^(prime)(1) is equal to

    Text Solution

    |

  20. If f(x)=1-x+x^2-x^3+......-x^(99)+x^(100) then f^(prime)(1) equals

    Text Solution

    |