Home
Class 11
MATHS
lim(xrarr0)(|sinx|)/(x) is equal to...

`lim_(xrarr0)(|sinx|)/(x)` is equal to

A

1

B

`-1`

C

Does not exist

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem \( \lim_{x \to 0} \frac{|\sin x|}{x} \), we will evaluate both the left-hand limit and the right-hand limit. ### Step-by-Step Solution: 1. **Identify the limit**: We need to evaluate \( \lim_{x \to 0} \frac{|\sin x|}{x} \). 2. **Consider the left-hand limit**: \[ \lim_{x \to 0^-} \frac{|\sin x|}{x} \] When \( x \) approaches 0 from the left (i.e., \( x < 0 \)), \( \sin x \) is negative. Therefore, \( |\sin x| = -\sin x \). Thus, we can rewrite the limit as: \[ \lim_{x \to 0^-} \frac{-\sin x}{x} \] We can factor out the negative sign: \[ -\lim_{x \to 0^-} \frac{\sin x}{x} \] We know from standard limit results that: \[ \lim_{x \to 0} \frac{\sin x}{x} = 1 \] Therefore: \[ -\lim_{x \to 0^-} \frac{\sin x}{x} = -1 \] 3. **Consider the right-hand limit**: \[ \lim_{x \to 0^+} \frac{|\sin x|}{x} \] When \( x \) approaches 0 from the right (i.e., \( x > 0 \)), \( \sin x \) is positive. Therefore, \( |\sin x| = \sin x \). Thus, we can rewrite the limit as: \[ \lim_{x \to 0^+} \frac{\sin x}{x} \] Again, using the standard limit result: \[ \lim_{x \to 0^+} \frac{\sin x}{x} = 1 \] 4. **Compare the limits**: - Left-hand limit: \( -1 \) - Right-hand limit: \( 1 \) Since the left-hand limit and the right-hand limit are not equal, we conclude that the limit does not exist. ### Final Answer: \[ \lim_{x \to 0} \frac{|\sin x|}{x} \text{ does not exist.} \]

To solve the limit problem \( \lim_{x \to 0} \frac{|\sin x|}{x} \), we will evaluate both the left-hand limit and the right-hand limit. ### Step-by-Step Solution: 1. **Identify the limit**: We need to evaluate \( \lim_{x \to 0} \frac{|\sin x|}{x} \). 2. **Consider the left-hand limit**: \[ ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|4 Videos
  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|11 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|16 Videos
  • LINEAR INEQUALITIES

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|14 Videos

Similar Questions

Explore conceptually related problems

lim_(xrarr0)(sin5x)/(x) is equal to

lim_(xrarr0) (sinx)/(x)= ?

lim_(xrarr(pi))(sinx)/(x-pi) is equal to

lim_(xrarr0) (x)/(tan^-1x) is equal to

lim_(xrarr0) (sin 3 x)/(2x)

lim_(xrarr0^-)(sinx)/(sqrt(x)) is equal to

lim_(xrarr0)(sin(x)/(4))/(x)

The value of lim_(xrarr0)(secx+tanx)^(1/x) is equal to

underset(xrarr0)(lim)(sinnx)/x is equal to

lim_(xrarr0)((1+x)^(n)-1)/(x) is equal to

NCERT EXEMPLAR ENGLISH-LIMITS AND DERIVATIVES -OBJECTIVE TYPE QUESTIONS
  1. lim(xrarr1)(x^(m)-1)/(x^(n)-1) is equal to

    Text Solution

    |

  2. lim(thetato0)(1-cos4theta)/(1-cos6theta) is equal to

    Text Solution

    |

  3. lim(xrarr0)("cosec"x-cotx)/(x) is equal to

    Text Solution

    |

  4. lim(xrarr0)(sinx)/(sqrt(x+1)-sqrt(1-x)) is equal to

    Text Solution

    |

  5. lim(xrarr(pi//4))(sec^2x-2)/(tanx-1) is

    Text Solution

    |

  6. lim(x->1)[(2x-3)(sqrtx-1)]/[2x^2+x-3]

    Text Solution

    |

  7. If f(x) = { sin[x]/([x]),[x] != 0 ; 0, [x] = 0} , Where[.] denotes the...

    Text Solution

    |

  8. lim(xrarr0)(|sinx|)/(x) is equal to

    Text Solution

    |

  9. If f(x) ={x^2-1, 0 lt x lt 2 , 2x+3 , 2 le x lt 3then the quadratic eq...

    Text Solution

    |

  10. lim(xrarr0)(tan2x-x)/(3x-sinx) is equal to

    Text Solution

    |

  11. if f(x) =x-[x], in R, then f^(')(1/2) is equal to

    Text Solution

    |

  12. if y=sqrt(x) + 1/sqrt(x), then (dy)/(dx) at x=1 is equal to

    Text Solution

    |

  13. If f(x) =(x-4)/(2sqrt(x)), then f^(')(1) is equal to

    Text Solution

    |

  14. if y=(1+1/x^(2))/(1-1/(x)^(2)),then (dy)/(dx) is equal to

    Text Solution

    |

  15. if y=(sinx+cosx)/(sinx-cosx), then (dy)/(dx) at x=0 is equal to

    Text Solution

    |

  16. if y=(sin(x+9))/(cosx), then (dy)/(dx) at x=0 is equal to

    Text Solution

    |

  17. If f(x)=1+x+(x^2)/2++(x^(100))/(100), then f^(prime)(1) is equal to

    Text Solution

    |

  18. Find the derivative of (x^(n)-a^(n))/(x-a) at x=a for some constant a.

    Text Solution

    |

  19. If f(x)=x^(100)+x^(99)++x+1, then f^(prime)(1) is equal to

    Text Solution

    |

  20. If f(x)=1-x+x^2-x^3+......-x^(99)+x^(100) then f^(prime)(1) equals

    Text Solution

    |