Home
Class 11
MATHS
If f(x) ={x^2-1, 0 lt x lt 2 , 2x+3 , 2 ...

If f(x) ={`x^2-1, 0 lt x lt 2` , `2x+3 , 2 le x lt 3`then the quadratic equation whose roots are `lim_(x->2^+)f(x)` and `lim_(x->2^-)f(x)` is

A

`x^(2)-6x+9=0`

B

`x^(2)-7x+8=0`

C

`x^(2)-14x+49=0`

D

`x^(2)-10x+21=0`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the limits of the function \( f(x) \) as \( x \) approaches 2 from the right (denoted as \( \lim_{x \to 2^+} f(x) \)) and from the left (denoted as \( \lim_{x \to 2^-} f(x) \)). Then, we will use these limits to form a quadratic equation. ### Step 1: Find \( \lim_{x \to 2^+} f(x) \) For \( x \) approaching 2 from the right (i.e., \( x \to 2^+ \)), we use the piece of the function defined for \( 2 \leq x < 3 \): \[ f(x) = 2x + 3 \] Now, substituting \( x = 2 \): \[ \lim_{x \to 2^+} f(x) = 2(2) + 3 = 4 + 3 = 7 \] ### Step 2: Find \( \lim_{x \to 2^-} f(x) \) For \( x \) approaching 2 from the left (i.e., \( x \to 2^- \)), we use the piece of the function defined for \( 0 < x < 2 \): \[ f(x) = x^2 - 1 \] Now, substituting \( x = 2 \): \[ \lim_{x \to 2^-} f(x) = 2^2 - 1 = 4 - 1 = 3 \] ### Step 3: Identify the roots We have found: - \( \alpha = \lim_{x \to 2^+} f(x) = 7 \) - \( \beta = \lim_{x \to 2^-} f(x) = 3 \) ### Step 4: Form the quadratic equation The quadratic equation with roots \( \alpha \) and \( \beta \) can be expressed as: \[ x^2 - (\alpha + \beta)x + \alpha \beta = 0 \] Calculating \( \alpha + \beta \) and \( \alpha \beta \): \[ \alpha + \beta = 7 + 3 = 10 \] \[ \alpha \beta = 7 \cdot 3 = 21 \] Thus, the quadratic equation is: \[ x^2 - 10x + 21 = 0 \] ### Final Answer The quadratic equation whose roots are \( \lim_{x \to 2^+} f(x) \) and \( \lim_{x \to 2^-} f(x) \) is: \[ x^2 - 10x + 21 = 0 \] ---

To solve the problem, we need to find the limits of the function \( f(x) \) as \( x \) approaches 2 from the right (denoted as \( \lim_{x \to 2^+} f(x) \)) and from the left (denoted as \( \lim_{x \to 2^-} f(x) \)). Then, we will use these limits to form a quadratic equation. ### Step 1: Find \( \lim_{x \to 2^+} f(x) \) For \( x \) approaching 2 from the right (i.e., \( x \to 2^+ \)), we use the piece of the function defined for \( 2 \leq x < 3 \): \[ f(x) = 2x + 3 \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|4 Videos
  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|11 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|16 Videos
  • LINEAR INEQUALITIES

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|14 Videos

Similar Questions

Explore conceptually related problems

Let f (x)= {{:(x ^(2),0lt x lt2),(2x-3, 2 le x lt3),(x+2, x ge3):} then the tuue equations:

If f(x)={{:(,x^(2)+1,0 le x lt 1),(,-3x+5, 1 le x le 2):}

If f(x)={:{(3x^2+12x-1"," -1le x le2),(37-x ","2 lt x le 3):} then

If f(x) = {{:( 3x ^(2) + 12 x - 1",", - 1 le x le 2), (37- x",", 2 lt x le 3):}, then

If f (x)= {{:(1+x, 0 le x le 2),( 3x-2, 2 lt x le 3):}, then f (f(x)) is not differentiable at:

If f(x)={:{(1+sin x", " 0 le x lt pi//2),(" "1 ", " x lt0):} then show that f'(0) does not exist.

Let f(x) ={:{(x, "for", 0 le x lt1),( 3-x,"for", 1 le x le2):} Then f(x) is

The function f(x)= {(5x-4 ", " 0 lt x le 1 ),( 4x^3-3x", " 1 lt x lt 2):}

If f(x) {:{(x^(2)+4," for "x lt 2 ),(x^(3)," for " x gt 2 ):} , find Lim_(x to 2) f(x)

If f(x) is defined as f(x)={{:(2x+3,x,le 0),(3x+3,x,ge 0):} then evaluate : lim_(xrarr0) f(x) "and" lim_(xrarr1) f(x)

NCERT EXEMPLAR ENGLISH-LIMITS AND DERIVATIVES -OBJECTIVE TYPE QUESTIONS
  1. lim(xrarr1)(x^(m)-1)/(x^(n)-1) is equal to

    Text Solution

    |

  2. lim(thetato0)(1-cos4theta)/(1-cos6theta) is equal to

    Text Solution

    |

  3. lim(xrarr0)("cosec"x-cotx)/(x) is equal to

    Text Solution

    |

  4. lim(xrarr0)(sinx)/(sqrt(x+1)-sqrt(1-x)) is equal to

    Text Solution

    |

  5. lim(xrarr(pi//4))(sec^2x-2)/(tanx-1) is

    Text Solution

    |

  6. lim(x->1)[(2x-3)(sqrtx-1)]/[2x^2+x-3]

    Text Solution

    |

  7. If f(x) = { sin[x]/([x]),[x] != 0 ; 0, [x] = 0} , Where[.] denotes the...

    Text Solution

    |

  8. lim(xrarr0)(|sinx|)/(x) is equal to

    Text Solution

    |

  9. If f(x) ={x^2-1, 0 lt x lt 2 , 2x+3 , 2 le x lt 3then the quadratic eq...

    Text Solution

    |

  10. lim(xrarr0)(tan2x-x)/(3x-sinx) is equal to

    Text Solution

    |

  11. if f(x) =x-[x], in R, then f^(')(1/2) is equal to

    Text Solution

    |

  12. if y=sqrt(x) + 1/sqrt(x), then (dy)/(dx) at x=1 is equal to

    Text Solution

    |

  13. If f(x) =(x-4)/(2sqrt(x)), then f^(')(1) is equal to

    Text Solution

    |

  14. if y=(1+1/x^(2))/(1-1/(x)^(2)),then (dy)/(dx) is equal to

    Text Solution

    |

  15. if y=(sinx+cosx)/(sinx-cosx), then (dy)/(dx) at x=0 is equal to

    Text Solution

    |

  16. if y=(sin(x+9))/(cosx), then (dy)/(dx) at x=0 is equal to

    Text Solution

    |

  17. If f(x)=1+x+(x^2)/2++(x^(100))/(100), then f^(prime)(1) is equal to

    Text Solution

    |

  18. Find the derivative of (x^(n)-a^(n))/(x-a) at x=a for some constant a.

    Text Solution

    |

  19. If f(x)=x^(100)+x^(99)++x+1, then f^(prime)(1) is equal to

    Text Solution

    |

  20. If f(x)=1-x+x^2-x^3+......-x^(99)+x^(100) then f^(prime)(1) equals

    Text Solution

    |