Home
Class 11
MATHS
If f(x) =(x-4)/(2sqrt(x)), then f^(')(1)...

If f(x) `=(x-4)/(2sqrt(x))`, then `f^(')(1)` is equal to

A

`5/4`

B

`4/5`

C

1

D

0

Text Solution

AI Generated Solution

The correct Answer is:
To find \( f'(1) \) for the function \( f(x) = \frac{x - 4}{2\sqrt{x}} \), we will use the quotient rule of differentiation. ### Step-by-Step Solution: 1. **Identify the functions:** Let \( u = x - 4 \) and \( v = 2\sqrt{x} \). 2. **Differentiate \( u \) and \( v \):** - The derivative of \( u \) is \( u' = 1 \) (since the derivative of \( x \) is 1 and the derivative of a constant is 0). - The derivative of \( v \) is \( v' = 2 \cdot \frac{1}{2\sqrt{x}} = \frac{1}{\sqrt{x}} \) (using the chain rule). 3. **Apply the quotient rule:** The quotient rule states that if \( f(x) = \frac{u}{v} \), then: \[ f'(x) = \frac{v \cdot u' - u \cdot v'}{v^2} \] Substituting in our values: \[ f'(x) = \frac{(2\sqrt{x}) \cdot (1) - (x - 4) \cdot \left(\frac{1}{\sqrt{x}}\right)}{(2\sqrt{x})^2} \] 4. **Simplify the expression:** - The denominator becomes \( (2\sqrt{x})^2 = 4x \). - The numerator becomes: \[ 2\sqrt{x} - \frac{x - 4}{\sqrt{x}} = 2\sqrt{x} - \frac{x}{\sqrt{x}} + \frac{4}{\sqrt{x}} = 2\sqrt{x} - \sqrt{x} + \frac{4}{\sqrt{x}} = \sqrt{x} + \frac{4}{\sqrt{x}} \] Thus, we have: \[ f'(x) = \frac{\sqrt{x} + \frac{4}{\sqrt{x}}}{4x} \] 5. **Combine the terms in the numerator:** To combine \( \sqrt{x} \) and \( \frac{4}{\sqrt{x}} \), we can write: \[ f'(x) = \frac{\frac{x + 4}{\sqrt{x}}}{4x} = \frac{x + 4}{4x\sqrt{x}} \] 6. **Evaluate \( f'(1) \):** Substitute \( x = 1 \): \[ f'(1) = \frac{1 + 4}{4 \cdot 1 \cdot \sqrt{1}} = \frac{5}{4} \] ### Final Answer: Thus, \( f'(1) = \frac{5}{4} \). ---

To find \( f'(1) \) for the function \( f(x) = \frac{x - 4}{2\sqrt{x}} \), we will use the quotient rule of differentiation. ### Step-by-Step Solution: 1. **Identify the functions:** Let \( u = x - 4 \) and \( v = 2\sqrt{x} \). 2. **Differentiate \( u \) and \( v \):** ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|4 Videos
  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|11 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|16 Videos
  • LINEAR INEQUALITIES

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|14 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(x-4)/(2sqrt(x)) , then find f'(1)

If f(x) = (x-4) / (2sqrtx) , then f' (4) is equal to

If f(x)=(x-4)/(2sqrt(x)) , then f^(prime)(1) is a. 5/4 b. 4/5 c. 1 d. 0

If f(x)=((3x+1)(2sqrt(x)-1))/(sqrt(x)) , then f'(1) is equal to (i) 5 (ii) -5 (iii) 6 (iv) (11)/(2)

If f(x)=(log_(cotx)tanx)(log_(tanx)cotx)^(-1) +tan^(-1)((x)/(sqrt(4-x^(2)))) , then f'(0) is equal to

If f'(x)=sqrt(x) and f(1)=2 then f(x) is equal to

if f(x) = x-[x], in R, then f^(')(1/2) is equal to

If f (x)= sqrt((1+ sin ^(-1) x)/(1- tan ^(-1)x)), then f '(0) is equal to:

If f (x) = sqrt((1+ sin ^(-1) x)/(1- tan ^(-1)x)), then f (0) is equal to :

If two roots of the equation (p-1)(x^2 +x +1)^2 -(p+1)(x^4+x^2+1)=0 are real and distinct and f(x)=(1-x)/(1+x) then f(f(x))+f(f(1/x)) is equal to

NCERT EXEMPLAR ENGLISH-LIMITS AND DERIVATIVES -OBJECTIVE TYPE QUESTIONS
  1. lim(xrarr1)(x^(m)-1)/(x^(n)-1) is equal to

    Text Solution

    |

  2. lim(thetato0)(1-cos4theta)/(1-cos6theta) is equal to

    Text Solution

    |

  3. lim(xrarr0)("cosec"x-cotx)/(x) is equal to

    Text Solution

    |

  4. lim(xrarr0)(sinx)/(sqrt(x+1)-sqrt(1-x)) is equal to

    Text Solution

    |

  5. lim(xrarr(pi//4))(sec^2x-2)/(tanx-1) is

    Text Solution

    |

  6. lim(x->1)[(2x-3)(sqrtx-1)]/[2x^2+x-3]

    Text Solution

    |

  7. If f(x) = { sin[x]/([x]),[x] != 0 ; 0, [x] = 0} , Where[.] denotes the...

    Text Solution

    |

  8. lim(xrarr0)(|sinx|)/(x) is equal to

    Text Solution

    |

  9. If f(x) ={x^2-1, 0 lt x lt 2 , 2x+3 , 2 le x lt 3then the quadratic eq...

    Text Solution

    |

  10. lim(xrarr0)(tan2x-x)/(3x-sinx) is equal to

    Text Solution

    |

  11. if f(x) =x-[x], in R, then f^(')(1/2) is equal to

    Text Solution

    |

  12. if y=sqrt(x) + 1/sqrt(x), then (dy)/(dx) at x=1 is equal to

    Text Solution

    |

  13. If f(x) =(x-4)/(2sqrt(x)), then f^(')(1) is equal to

    Text Solution

    |

  14. if y=(1+1/x^(2))/(1-1/(x)^(2)),then (dy)/(dx) is equal to

    Text Solution

    |

  15. if y=(sinx+cosx)/(sinx-cosx), then (dy)/(dx) at x=0 is equal to

    Text Solution

    |

  16. if y=(sin(x+9))/(cosx), then (dy)/(dx) at x=0 is equal to

    Text Solution

    |

  17. If f(x)=1+x+(x^2)/2++(x^(100))/(100), then f^(prime)(1) is equal to

    Text Solution

    |

  18. Find the derivative of (x^(n)-a^(n))/(x-a) at x=a for some constant a.

    Text Solution

    |

  19. If f(x)=x^(100)+x^(99)++x+1, then f^(prime)(1) is equal to

    Text Solution

    |

  20. If f(x)=1-x+x^2-x^3+......-x^(99)+x^(100) then f^(prime)(1) equals

    Text Solution

    |