Home
Class 11
MATHS
if y=(sinx+cosx)/(sinx-cosx), then (dy)/...

if `y=(sinx+cosx)/(sinx-cosx)`, then `(dy)/(dx)` at x=0 is equal to

A

`-2`

B

0

C

`1/2`

D

Does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To find \(\frac{dy}{dx}\) for the function \(y = \frac{\sin x + \cos x}{\sin x - \cos x}\) at \(x = 0\), we will use the quotient rule of differentiation. ### Step 1: Identify \(u\) and \(v\) Let: - \(u = \sin x + \cos x\) - \(v = \sin x - \cos x\) ### Step 2: Differentiate \(u\) and \(v\) Now we differentiate \(u\) and \(v\): - \(\frac{du}{dx} = \cos x - \sin x\) - \(\frac{dv}{dx} = \cos x + \sin x\) ### Step 3: Apply the Quotient Rule Using the quotient rule: \[ \frac{dy}{dx} = \frac{v \cdot \frac{du}{dx} - u \cdot \frac{dv}{dx}}{v^2} \] Substituting \(u\), \(v\), \(\frac{du}{dx}\), and \(\frac{dv}{dx}\): \[ \frac{dy}{dx} = \frac{(\sin x - \cos x)(\cos x - \sin x) - (\sin x + \cos x)(\cos x + \sin x)}{(\sin x - \cos x)^2} \] ### Step 4: Simplify the Numerator Now we simplify the numerator: 1. Expand \((\sin x - \cos x)(\cos x - \sin x)\): \[ = -(\sin^2 x - \cos^2 x) = -(\sin^2 x - \cos^2 x) \] 2. Expand \((\sin x + \cos x)(\cos x + \sin x)\): \[ = \sin^2 x + \cos^2 x + 2\sin x \cos x \] Using the identity \(\sin^2 x + \cos^2 x = 1\): \[ = 1 + 2\sin x \cos x \] Combining these results: \[ \frac{dy}{dx} = \frac{-\sin^2 x + \cos^2 x - (1 + 2\sin x \cos x)}{(\sin x - \cos x)^2} \] This simplifies to: \[ = \frac{-\sin^2 x + \cos^2 x - 1 - 2\sin x \cos x}{(\sin x - \cos x)^2} \] ### Step 5: Evaluate at \(x = 0\) Now we need to evaluate \(\frac{dy}{dx}\) at \(x = 0\): - \(\sin(0) = 0\) - \(\cos(0) = 1\) Substituting these values: \[ \frac{dy}{dx} = \frac{-(0)^2 + (1)^2 - 1 - 2(0)(1)}{(0 - 1)^2} \] This simplifies to: \[ = \frac{-0 + 1 - 1 - 0}{1} = \frac{0}{1} = 0 \] ### Final Result Thus, \(\frac{dy}{dx}\) at \(x = 0\) is: \[ \frac{dy}{dx} = -2 \]

To find \(\frac{dy}{dx}\) for the function \(y = \frac{\sin x + \cos x}{\sin x - \cos x}\) at \(x = 0\), we will use the quotient rule of differentiation. ### Step 1: Identify \(u\) and \(v\) Let: - \(u = \sin x + \cos x\) - \(v = \sin x - \cos x\) ### Step 2: Differentiate \(u\) and \(v\) ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|4 Videos
  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|11 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|16 Videos
  • LINEAR INEQUALITIES

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|14 Videos

Similar Questions

Explore conceptually related problems

If y=tan^(-1)((sinx+cosx)/(cosx-sinx)) , then (dy)/(dx) is equal to (a) 1/2 (b) 0 (c) 1 (d) none of these

If y=(sinx)/(x+cosx) , then find (dy)/(dx) .

If y=log_(cosx)sinx, then (dy)/(dx) is equal to

If y=tan^(-1)((1-cosx)/(sinx)), then (dy)/(dx) is

ysinx dy/dx=(sinx-y^2)cosx

If y=(sinx)^(tanx)+(cosx)^(secx) , find (dy)/(dx)

If y=x^(cosx)+(sinx)^(tanx) , find (dy)/(dx)

If y=(log_(cosx)sinx)(log_(sinx)cosx)+"sin"""^(-1)(2x)/(1+x^(2)) , then (dy)/(dx) at x=(pi)/(2) is equal to

int(dx)/((sinx-2cosx)(2sinx+cosx))

int(1)/(cosx-sinx)dx is equal to

NCERT EXEMPLAR ENGLISH-LIMITS AND DERIVATIVES -OBJECTIVE TYPE QUESTIONS
  1. lim(xrarr1)(x^(m)-1)/(x^(n)-1) is equal to

    Text Solution

    |

  2. lim(thetato0)(1-cos4theta)/(1-cos6theta) is equal to

    Text Solution

    |

  3. lim(xrarr0)("cosec"x-cotx)/(x) is equal to

    Text Solution

    |

  4. lim(xrarr0)(sinx)/(sqrt(x+1)-sqrt(1-x)) is equal to

    Text Solution

    |

  5. lim(xrarr(pi//4))(sec^2x-2)/(tanx-1) is

    Text Solution

    |

  6. lim(x->1)[(2x-3)(sqrtx-1)]/[2x^2+x-3]

    Text Solution

    |

  7. If f(x) = { sin[x]/([x]),[x] != 0 ; 0, [x] = 0} , Where[.] denotes the...

    Text Solution

    |

  8. lim(xrarr0)(|sinx|)/(x) is equal to

    Text Solution

    |

  9. If f(x) ={x^2-1, 0 lt x lt 2 , 2x+3 , 2 le x lt 3then the quadratic eq...

    Text Solution

    |

  10. lim(xrarr0)(tan2x-x)/(3x-sinx) is equal to

    Text Solution

    |

  11. if f(x) =x-[x], in R, then f^(')(1/2) is equal to

    Text Solution

    |

  12. if y=sqrt(x) + 1/sqrt(x), then (dy)/(dx) at x=1 is equal to

    Text Solution

    |

  13. If f(x) =(x-4)/(2sqrt(x)), then f^(')(1) is equal to

    Text Solution

    |

  14. if y=(1+1/x^(2))/(1-1/(x)^(2)),then (dy)/(dx) is equal to

    Text Solution

    |

  15. if y=(sinx+cosx)/(sinx-cosx), then (dy)/(dx) at x=0 is equal to

    Text Solution

    |

  16. if y=(sin(x+9))/(cosx), then (dy)/(dx) at x=0 is equal to

    Text Solution

    |

  17. If f(x)=1+x+(x^2)/2++(x^(100))/(100), then f^(prime)(1) is equal to

    Text Solution

    |

  18. Find the derivative of (x^(n)-a^(n))/(x-a) at x=a for some constant a.

    Text Solution

    |

  19. If f(x)=x^(100)+x^(99)++x+1, then f^(prime)(1) is equal to

    Text Solution

    |

  20. If f(x)=1-x+x^2-x^3+......-x^(99)+x^(100) then f^(prime)(1) equals

    Text Solution

    |