Home
Class 11
MATHS
if y=(sin(x+9))/(cosx), then (dy)/(dx) a...

if `y=(sin(x+9))/(cosx)`, then `(dy)/(dx)` at x=0 is equal to

A

cos9

B

sin9

C

0

D

1

Text Solution

AI Generated Solution

The correct Answer is:
To find the derivative of the function \( y = \frac{\sin(x + 9)}{\cos x} \) and evaluate it at \( x = 0 \), we can follow these steps: ### Step 1: Identify the function We have: \[ y = \frac{\sin(x + 9)}{\cos x} \] ### Step 2: Apply the Quotient Rule The Quotient Rule states that if \( y = \frac{u}{v} \), then: \[ \frac{dy}{dx} = \frac{v \frac{du}{dx} - u \frac{dv}{dx}}{v^2} \] Here, \( u = \sin(x + 9) \) and \( v = \cos x \). ### Step 3: Differentiate \( u \) and \( v \) We need to find \( \frac{du}{dx} \) and \( \frac{dv}{dx} \): - For \( u = \sin(x + 9) \): \[ \frac{du}{dx} = \cos(x + 9) \] - For \( v = \cos x \): \[ \frac{dv}{dx} = -\sin x \] ### Step 4: Substitute into the Quotient Rule Now substitute \( u \), \( v \), \( \frac{du}{dx} \), and \( \frac{dv}{dx} \) into the Quotient Rule: \[ \frac{dy}{dx} = \frac{\cos x \cdot \cos(x + 9) - \sin(x + 9) \cdot (-\sin x)}{\cos^2 x} \] This simplifies to: \[ \frac{dy}{dx} = \frac{\cos x \cdot \cos(x + 9) + \sin(x + 9) \cdot \sin x}{\cos^2 x} \] ### Step 5: Use the Angle Addition Formula Using the angle addition formula for cosine: \[ \cos a \cos b + \sin a \sin b = \cos(a - b) \] We can rewrite the numerator: \[ \cos x \cdot \cos(x + 9) + \sin(x + 9) \cdot \sin x = \cos((x + 9) - x) = \cos(9) \] Thus, we have: \[ \frac{dy}{dx} = \frac{\cos(9)}{\cos^2 x} \] ### Step 6: Evaluate at \( x = 0 \) Now we evaluate \( \frac{dy}{dx} \) at \( x = 0 \): \[ \frac{dy}{dx} \bigg|_{x=0} = \frac{\cos(9)}{\cos^2(0)} \] Since \( \cos(0) = 1 \), we have: \[ \frac{dy}{dx} \bigg|_{x=0} = \frac{\cos(9)}{1^2} = \cos(9) \] ### Final Answer Thus, the value of \( \frac{dy}{dx} \) at \( x = 0 \) is: \[ \cos(9) \]

To find the derivative of the function \( y = \frac{\sin(x + 9)}{\cos x} \) and evaluate it at \( x = 0 \), we can follow these steps: ### Step 1: Identify the function We have: \[ y = \frac{\sin(x + 9)}{\cos x} \] ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|4 Videos
  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|11 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|16 Videos
  • LINEAR INEQUALITIES

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|14 Videos

Similar Questions

Explore conceptually related problems

If y=(sin(x+9))/(cosx) , then (dy)/(dx) at x = 0 is: a. cos9 b. sin9 c. 0 d. 1

if y=(sinx+cosx)/(sinx-cosx) , then (dy)/(dx) at x=0 is equal to

If y=(sinx+cosx)/(sinx-cosx) , then (dy)/(dx) at x=0 is equal to

If y=(sinx)/(x+cosx) , then find (dy)/(dx) .

If y=(sinx+cosx)/(sinx-cosx) , then (dy)/(dx)" at "x=0 is

If sin(x y)+cos(x y)=0 , then (dy)/(dx) is

If y=log_(cosx)sinx, then (dy)/(dx) is equal to

If xe^(xy)-y=sin^(2)x then (dy)/(dx) at x = 0 is

If y=(log_(cosx)sinx)(log_(sinx)cosx)+"sin"""^(-1)(2x)/(1+x^(2)) , then (dy)/(dx) at x=(pi)/(2) is equal to

If y=(1+x)^y+sin^-1(sin^2x) , then (dy)/(dx) at x = 0 is

NCERT EXEMPLAR ENGLISH-LIMITS AND DERIVATIVES -OBJECTIVE TYPE QUESTIONS
  1. lim(xrarr1)(x^(m)-1)/(x^(n)-1) is equal to

    Text Solution

    |

  2. lim(thetato0)(1-cos4theta)/(1-cos6theta) is equal to

    Text Solution

    |

  3. lim(xrarr0)("cosec"x-cotx)/(x) is equal to

    Text Solution

    |

  4. lim(xrarr0)(sinx)/(sqrt(x+1)-sqrt(1-x)) is equal to

    Text Solution

    |

  5. lim(xrarr(pi//4))(sec^2x-2)/(tanx-1) is

    Text Solution

    |

  6. lim(x->1)[(2x-3)(sqrtx-1)]/[2x^2+x-3]

    Text Solution

    |

  7. If f(x) = { sin[x]/([x]),[x] != 0 ; 0, [x] = 0} , Where[.] denotes the...

    Text Solution

    |

  8. lim(xrarr0)(|sinx|)/(x) is equal to

    Text Solution

    |

  9. If f(x) ={x^2-1, 0 lt x lt 2 , 2x+3 , 2 le x lt 3then the quadratic eq...

    Text Solution

    |

  10. lim(xrarr0)(tan2x-x)/(3x-sinx) is equal to

    Text Solution

    |

  11. if f(x) =x-[x], in R, then f^(')(1/2) is equal to

    Text Solution

    |

  12. if y=sqrt(x) + 1/sqrt(x), then (dy)/(dx) at x=1 is equal to

    Text Solution

    |

  13. If f(x) =(x-4)/(2sqrt(x)), then f^(')(1) is equal to

    Text Solution

    |

  14. if y=(1+1/x^(2))/(1-1/(x)^(2)),then (dy)/(dx) is equal to

    Text Solution

    |

  15. if y=(sinx+cosx)/(sinx-cosx), then (dy)/(dx) at x=0 is equal to

    Text Solution

    |

  16. if y=(sin(x+9))/(cosx), then (dy)/(dx) at x=0 is equal to

    Text Solution

    |

  17. If f(x)=1+x+(x^2)/2++(x^(100))/(100), then f^(prime)(1) is equal to

    Text Solution

    |

  18. Find the derivative of (x^(n)-a^(n))/(x-a) at x=a for some constant a.

    Text Solution

    |

  19. If f(x)=x^(100)+x^(99)++x+1, then f^(prime)(1) is equal to

    Text Solution

    |

  20. If f(x)=1-x+x^2-x^3+......-x^(99)+x^(100) then f^(prime)(1) equals

    Text Solution

    |