Home
Class 11
MATHS
If f(x)=1+x+(x^2)/2++(x^(100))/(100), th...

If `f(x)=1+x+(x^2)/2++(x^(100))/(100),` then `f^(prime)(1)` is equal to

A

`1/(100)`

B

100

C

0

D

Does not exist

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative of the function \( f(x) \) and then evaluate it at \( x = 1 \). ### Step-by-Step Solution: 1. **Define the Function:** The function is given as: \[ f(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{3} + \ldots + \frac{x^{100}}{100} \] 2. **Differentiate the Function:** We will differentiate \( f(x) \) term by term. The derivative of \( x^n \) is \( n \cdot x^{n-1} \). Thus, the derivative \( f'(x) \) is: \[ f'(x) = 0 + 1 + \frac{2x}{2} + \frac{3x^2}{3} + \ldots + \frac{100x^{99}}{100} \] Simplifying this, we get: \[ f'(x) = 1 + 1 + x + x^2 + \ldots + x^{99} \] 3. **Recognize the Pattern:** The expression \( 1 + 1 + x + x^2 + \ldots + x^{99} \) can be simplified further. The first two terms give us \( 2 \), and the remaining terms form a geometric series: \[ f'(x) = 2 + x + x^2 + \ldots + x^{99} \] 4. **Sum of the Geometric Series:** The sum of the geometric series \( x + x^2 + \ldots + x^{99} \) can be calculated using the formula for the sum of a geometric series: \[ S_n = a \frac{1 - r^n}{1 - r} \] Here, \( a = x \), \( r = x \), and \( n = 99 \): \[ S = x \frac{1 - x^{99}}{1 - x} \] Therefore: \[ f'(x) = 2 + \frac{x(1 - x^{99})}{1 - x} \] 5. **Evaluate the Derivative at \( x = 1 \):** Now we need to evaluate \( f'(1) \): \[ f'(1) = 2 + \frac{1(1 - 1^{99})}{1 - 1} \] The term \( \frac{1(1 - 1)}{1 - 1} \) is indeterminate, but we can evaluate the limit as \( x \) approaches \( 1 \): \[ S = 1 + 1 + 1 + \ldots + 1 \quad (\text{100 terms}) \] Thus: \[ f'(1) = 100 \] ### Final Answer: \[ f'(1) = 100 \]

To solve the problem, we need to find the derivative of the function \( f(x) \) and then evaluate it at \( x = 1 \). ### Step-by-Step Solution: 1. **Define the Function:** The function is given as: \[ f(x) = 1 + x + \frac{x^2}{2} + \frac{x^3}{3} + \ldots + \frac{x^{100}}{100} ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|4 Videos
  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|11 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|16 Videos
  • LINEAR INEQUALITIES

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|14 Videos

Similar Questions

Explore conceptually related problems

If f(x)=x^(100)+x^(99)++x+1, then f^(prime)(1) is equal to

If f(x)=1-x+x^2-x^3+......-x^(99)+x^(100) then f^(prime)(1) equals

If f(x)=1-x+x^2-x^3+...-x^(99)+x^(100) , then f^(prime)(1) equals a. 150 b. -50 c. -150 d. 50

If f(x)=x^(100)+x^(99)+...+x+1, then f^(prime)(1) is equal to a. 5050 b. 5049 c. 5051 d. 50051

If f(x)=1-x+x^(2)-x^(3)+ . . .-x^(99)+x^(100) then f'(1) is equal to

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x)=(x-1)/(x+1) then f(2x) is equal to

If f(x) = log_(e) ((1-x)/(1+x)) , then f((2x)/(1 + x^(2))) is equal to :

If f(x) =(x-4)/(2sqrt(x)) , then f^(')(1) is equal to

If f(x)=sin^(-1)""(2*(3)^(x))/(1+9^(x)) , then f'(-(1)/(2)) is equal to

NCERT EXEMPLAR ENGLISH-LIMITS AND DERIVATIVES -OBJECTIVE TYPE QUESTIONS
  1. lim(xrarr1)(x^(m)-1)/(x^(n)-1) is equal to

    Text Solution

    |

  2. lim(thetato0)(1-cos4theta)/(1-cos6theta) is equal to

    Text Solution

    |

  3. lim(xrarr0)("cosec"x-cotx)/(x) is equal to

    Text Solution

    |

  4. lim(xrarr0)(sinx)/(sqrt(x+1)-sqrt(1-x)) is equal to

    Text Solution

    |

  5. lim(xrarr(pi//4))(sec^2x-2)/(tanx-1) is

    Text Solution

    |

  6. lim(x->1)[(2x-3)(sqrtx-1)]/[2x^2+x-3]

    Text Solution

    |

  7. If f(x) = { sin[x]/([x]),[x] != 0 ; 0, [x] = 0} , Where[.] denotes the...

    Text Solution

    |

  8. lim(xrarr0)(|sinx|)/(x) is equal to

    Text Solution

    |

  9. If f(x) ={x^2-1, 0 lt x lt 2 , 2x+3 , 2 le x lt 3then the quadratic eq...

    Text Solution

    |

  10. lim(xrarr0)(tan2x-x)/(3x-sinx) is equal to

    Text Solution

    |

  11. if f(x) =x-[x], in R, then f^(')(1/2) is equal to

    Text Solution

    |

  12. if y=sqrt(x) + 1/sqrt(x), then (dy)/(dx) at x=1 is equal to

    Text Solution

    |

  13. If f(x) =(x-4)/(2sqrt(x)), then f^(')(1) is equal to

    Text Solution

    |

  14. if y=(1+1/x^(2))/(1-1/(x)^(2)),then (dy)/(dx) is equal to

    Text Solution

    |

  15. if y=(sinx+cosx)/(sinx-cosx), then (dy)/(dx) at x=0 is equal to

    Text Solution

    |

  16. if y=(sin(x+9))/(cosx), then (dy)/(dx) at x=0 is equal to

    Text Solution

    |

  17. If f(x)=1+x+(x^2)/2++(x^(100))/(100), then f^(prime)(1) is equal to

    Text Solution

    |

  18. Find the derivative of (x^(n)-a^(n))/(x-a) at x=a for some constant a.

    Text Solution

    |

  19. If f(x)=x^(100)+x^(99)++x+1, then f^(prime)(1) is equal to

    Text Solution

    |

  20. If f(x)=1-x+x^2-x^3+......-x^(99)+x^(100) then f^(prime)(1) equals

    Text Solution

    |