Home
Class 11
MATHS
If f(x)=1-x+x^2-x^3+......-x^(99)+x^(100...

If `f(x)=1-x+x^2-x^3+......-x^(99)+x^(100)` then `f^(prime)(1)` equals

A

150

B

`-50`

C

`-150`

D

50

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the derivative of the function \( f(x) = 1 - x + x^2 - x^3 + \ldots - x^{99} + x^{100} \) and then evaluate it at \( x = 1 \). ### Step-by-Step Solution 1. **Identify the Function**: The function is given as: \[ f(x) = 1 - x + x^2 - x^3 + \ldots - x^{99} + x^{100} \] 2. **Differentiate the Function**: To find \( f'(x) \), we differentiate each term of the function: - The derivative of \( 1 \) is \( 0 \). - The derivative of \( -x \) is \( -1 \). - The derivative of \( x^2 \) is \( 2x \). - The derivative of \( -x^3 \) is \( -3x^2 \). - Continuing this way, the derivative of \( x^n \) is \( nx^{n-1} \). Therefore, the derivative \( f'(x) \) becomes: \[ f'(x) = 0 - 1 + 2x - 3x^2 + 4x^3 - \ldots - 99x^{98} + 100x^{99} \] 3. **Reorganize the Derivative**: We can rearrange the terms in \( f'(x) \): \[ f'(x) = -1 + 2x - 3x^2 + 4x^3 - \ldots - 99x^{98} + 100x^{99} \] 4. **Evaluate the Derivative at \( x = 1 \)**: Now we substitute \( x = 1 \) into the derivative: \[ f'(1) = -1 + 2(1) - 3(1^2) + 4(1^3) - \ldots - 99(1^{98}) + 100(1^{99}) \] This simplifies to: \[ f'(1) = -1 + 2 - 3 + 4 - 5 + \ldots - 99 + 100 \] 5. **Separate Odd and Even Terms**: We can group the terms into odd and even: \[ f'(1) = (2 + 4 + 6 + \ldots + 100) + (-1 - 3 - 5 - \ldots - 99) \] 6. **Calculate the Sum of Even Terms**: The sum of the first \( n \) even numbers is given by: \[ S_{even} = n(n + 1) \] where \( n \) is the number of even terms. Here, there are 50 even terms (from 2 to 100): \[ S_{even} = 50 \times 51 = 2550 \] 7. **Calculate the Sum of Odd Terms**: The sum of the first \( n \) odd numbers is given by: \[ S_{odd} = n^2 \] where \( n \) is the number of odd terms. Here, there are 50 odd terms (from 1 to 99): \[ S_{odd} = 50^2 = 2500 \] 8. **Combine the Sums**: Now, substituting back into our equation: \[ f'(1) = 2550 - 2500 = 50 \] ### Final Answer Thus, \( f'(1) = 50 \).

To solve the problem, we need to find the derivative of the function \( f(x) = 1 - x + x^2 - x^3 + \ldots - x^{99} + x^{100} \) and then evaluate it at \( x = 1 \). ### Step-by-Step Solution 1. **Identify the Function**: The function is given as: \[ f(x) = 1 - x + x^2 - x^3 + \ldots - x^{99} + x^{100} ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise FILLERS|4 Videos
  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|11 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|16 Videos
  • LINEAR INEQUALITIES

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|14 Videos

Similar Questions

Explore conceptually related problems

If f(x)=1-x+x^(2)-x^(3)+ . . .-x^(99)+x^(100) then f'(1) is equal to

If f(x)=1+x+(x^2)/2+...+(x^(100))/(100), then f^(prime)(1) is equal to a. 1/(100) b. 100 c. 50 d. 0

If f(x)=1+x+(x^2)/2++(x^(100))/(100), then f^(prime)(1) is equal to

If f(x)=x^(100)+x^(99)++x+1, then f^(prime)(1) is equal to

If f(x)=x^(100)+x^(99)+...+x+1, then f^(prime)(1) is equal to a. 5050 b. 5049 c. 5051 d. 50051

If f(x)=sqrt(x^2+6x+9) , then f^(prime)(x) is equal to (a) 1 for x<-3 (b) -1 for x<-3 (c) 1 for all x in RR (d) none of these

Find the derivative of the function f(x) given by f(x)=(1+x)(1+x^2)(1+x^4)(1+x^8) and hence find f^(prime)(1)

If f(x)=x^3+2x^2+3x+4 and g(x) is the inverse of f(x) then g^(prime)(4) is equal to- 1/4 (b) 0 (c) 1/3 (d) 4

If f(x)=x^3+2x^2+3x+4 and g(x) is the inverse of f(x) then g^(prime)(4) is equal to- 1/4 (b) 0 (c) 1/3 (d) 4

Let f(x)={(sinx^2)/x x!=0 0x=0, then f^(prime)(0^+)+f^(prime)(0^-) has the value equal to (a) 0 (b) 1 (c) 2 (d) None of these

NCERT EXEMPLAR ENGLISH-LIMITS AND DERIVATIVES -OBJECTIVE TYPE QUESTIONS
  1. lim(xrarr1)(x^(m)-1)/(x^(n)-1) is equal to

    Text Solution

    |

  2. lim(thetato0)(1-cos4theta)/(1-cos6theta) is equal to

    Text Solution

    |

  3. lim(xrarr0)("cosec"x-cotx)/(x) is equal to

    Text Solution

    |

  4. lim(xrarr0)(sinx)/(sqrt(x+1)-sqrt(1-x)) is equal to

    Text Solution

    |

  5. lim(xrarr(pi//4))(sec^2x-2)/(tanx-1) is

    Text Solution

    |

  6. lim(x->1)[(2x-3)(sqrtx-1)]/[2x^2+x-3]

    Text Solution

    |

  7. If f(x) = { sin[x]/([x]),[x] != 0 ; 0, [x] = 0} , Where[.] denotes the...

    Text Solution

    |

  8. lim(xrarr0)(|sinx|)/(x) is equal to

    Text Solution

    |

  9. If f(x) ={x^2-1, 0 lt x lt 2 , 2x+3 , 2 le x lt 3then the quadratic eq...

    Text Solution

    |

  10. lim(xrarr0)(tan2x-x)/(3x-sinx) is equal to

    Text Solution

    |

  11. if f(x) =x-[x], in R, then f^(')(1/2) is equal to

    Text Solution

    |

  12. if y=sqrt(x) + 1/sqrt(x), then (dy)/(dx) at x=1 is equal to

    Text Solution

    |

  13. If f(x) =(x-4)/(2sqrt(x)), then f^(')(1) is equal to

    Text Solution

    |

  14. if y=(1+1/x^(2))/(1-1/(x)^(2)),then (dy)/(dx) is equal to

    Text Solution

    |

  15. if y=(sinx+cosx)/(sinx-cosx), then (dy)/(dx) at x=0 is equal to

    Text Solution

    |

  16. if y=(sin(x+9))/(cosx), then (dy)/(dx) at x=0 is equal to

    Text Solution

    |

  17. If f(x)=1+x+(x^2)/2++(x^(100))/(100), then f^(prime)(1) is equal to

    Text Solution

    |

  18. Find the derivative of (x^(n)-a^(n))/(x-a) at x=a for some constant a.

    Text Solution

    |

  19. If f(x)=x^(100)+x^(99)++x+1, then f^(prime)(1) is equal to

    Text Solution

    |

  20. If f(x)=1-x+x^2-x^3+......-x^(99)+x^(100) then f^(prime)(1) equals

    Text Solution

    |