`lim_(xrarr0)(sinmxcot(x/sqrt(3)))=2`, then m=…………….
Text Solution
AI Generated Solution
To solve the limit problem \( \lim_{x \to 0} \left( \sin(mx) \cot\left(\frac{x}{\sqrt{3}}\right) \right) = 2 \), we will follow these steps:
### Step-by-Step Solution:
1. **Identify the Limit Form**:
We start by substituting \( x = 0 \) into the expression. We find that both \( \sin(mx) \) and \( \cot\left(\frac{x}{\sqrt{3}}\right) \) approach 0 as \( x \to 0 \). Thus, we have a \( \frac{0}{0} \) indeterminate form.
2. **Rewrite the Expression**:
...
Topper's Solved these Questions
LIMITS AND DERIVATIVES
NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|23 Videos
INTRODUCTION TO THREE DIMENSIONAL GEOMETRY
NCERT EXEMPLAR ENGLISH|Exercise Fillers|16 Videos
LINEAR INEQUALITIES
NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|14 Videos
Similar Questions
Explore conceptually related problems
lim_(xrarr0)x sec x
lim_(xrarr0) (sinx)/(x)= ?
lim_(xrarr0) (sin4x)/(1-sqrt(1-x))=?
lim_(xrarr0) (sin 3 x)/(2x)
lim_(xrarr0)(x^3 log x)
lim_(xrarr0) (sqrt(2+x)-sqrt(2))/(x)
lim_(xrarr0) (sin4x)/(1-sqrt(1-x)) , is
lim_(xrarr0) (2x)/(sqrt(1+x)-1)
lim_(xrarr0)(sin(x)/(4))/(x)
lim_(xrarr0) (sin^(2)4x)/(x^(2))= ?
NCERT EXEMPLAR ENGLISH-LIMITS AND DERIVATIVES -FILLERS