If `y=1+ x/(1!)+x^2/(2!)+x^3/(3!)+......,` then `(dy)/(dx)`
Text Solution
AI Generated Solution
To solve the problem, we need to differentiate the given function \( y \) with respect to \( x \). The function is defined as:
\[
y = 1 + \frac{x}{1!} + \frac{x^2}{2!} + \frac{x^3}{3!} + \ldots
\]
### Step-by-Step Solution:
...
Topper's Solved these Questions
LIMITS AND DERIVATIVES
NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|23 Videos
INTRODUCTION TO THREE DIMENSIONAL GEOMETRY
NCERT EXEMPLAR ENGLISH|Exercise Fillers|16 Videos
LINEAR INEQUALITIES
NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|14 Videos
Similar Questions
Explore conceptually related problems
If y=1+x/(1!)+(x^2)/(2!)+(x^3)/(3!)+ , show that (dy)/(dx)=ydot
If y = x^(4) + 2 x^(2) + 3x + 1 , then (dy)/(dx) at x = 1 is
If y=1+x+(x^(2))/(2!)+(x^(3))/(3!)+....+(x^(n))/(n!) , then show that (dy)/(dx)+(x^(n))/(n!)=y
If y= 1+ x + (x^2)/( 2!) + (x^3)/( 3!) + (x^4)/(4!) +…. to oo , show that (dy)/( dx) = y .
If y=2x^(3)+3x^(2)+6x+1 , then (dy)/(dx) will be -
y=x+x^(2)+(1)/(x)+(1)/(x^(3)) . Find (dy)/(dx)
Given that y= (3x -1)^(2) + (2x -1)^(3) , find (dy)/( dx) and the points on the curve for which (dy)/(dx)=0
If y=[2x^3+3][2x^-3+1] , then find (dy)/(dx) .
If y=(sin^(-1)x)^2+(cos^(-1)x)^2 , then (1-x^2) (d^2y)/(dx^2)-x(dy)/(dx) is equal to 4 (b) 3 (c) 1 (d) 0
If y=(sin^(-1)x)^2+(cos^(-1)x)^2 , then (1-x^2) (d^2y)/(dx^2)-x(dy)/(dx) is equal to 4 (b) 3 (c) 1 (d) 0
NCERT EXEMPLAR ENGLISH-LIMITS AND DERIVATIVES -FILLERS