Home
Class 11
MATHS
Prove that lim(x->3^+) x/[[x]] != lim(x...

Prove that `lim_(x->3^+) x/[[x]] != lim_(x->3^-) x/([x])`

Text Solution

AI Generated Solution

To prove that \[ \lim_{x \to 3^+} \frac{x}{[x]} \neq \lim_{x \to 3^-} \frac{x}{[x]} \] where \([x]\) denotes the greatest integer function (the largest integer less than or equal to \(x\)), we will evaluate both limits separately. ...
Promotional Banner

Topper's Solved these Questions

  • LIMITS AND DERIVATIVES

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|23 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|16 Videos
  • LINEAR INEQUALITIES

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|14 Videos

Similar Questions

Explore conceptually related problems

If f is an even function, then prove that lim_(x->0^-) f(x) = lim_(x->0^+) f(x)

(lim)_(x->3)x+3

lim_(xrarr3) x+3

lim_(x->0)x^3cos(2/x) =

Find : ("lim")_(x->3^+)x/([x]) . Is it equal to : ("lim")_(x->3^-)x/([x])

If f is an even function , then prove that Lim_( xto 0^(-)) f(x) = Lim_(x to 0^(+)) f(x) , whenever they exist .

lim_(x->0)(sin5x)/(tan3x)

lim_(x->0)(e^(5x) - 1)/(3x)

If f(x)=sgn(x)" and "g(x)=x^(3) ,then prove that lim_(xto0) f(x).g(x) exists though lim_(xto0) f(x) does not exist.

Evalute lim_(x to 3) [9x - 14]