Prove that `lim_(x->3^+) x/[[x]] != lim_(x->3^-) x/([x])`
Text Solution
AI Generated Solution
To prove that
\[
\lim_{x \to 3^+} \frac{x}{[x]} \neq \lim_{x \to 3^-} \frac{x}{[x]}
\]
where \([x]\) denotes the greatest integer function (the largest integer less than or equal to \(x\)), we will evaluate both limits separately.
...
Topper's Solved these Questions
LIMITS AND DERIVATIVES
NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|23 Videos
INTRODUCTION TO THREE DIMENSIONAL GEOMETRY
NCERT EXEMPLAR ENGLISH|Exercise Fillers|16 Videos
LINEAR INEQUALITIES
NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|14 Videos
Similar Questions
Explore conceptually related problems
If f is an even function, then prove that lim_(x->0^-) f(x) = lim_(x->0^+) f(x)
(lim)_(x->3)x+3
lim_(xrarr3) x+3
lim_(x->0)x^3cos(2/x) =
Find : ("lim")_(x->3^+)x/([x]) . Is it equal to : ("lim")_(x->3^-)x/([x])
If f is an even function , then prove that Lim_( xto 0^(-)) f(x) = Lim_(x to 0^(+)) f(x) , whenever they exist .
lim_(x->0)(sin5x)/(tan3x)
lim_(x->0)(e^(5x) - 1)/(3x)
If f(x)=sgn(x)" and "g(x)=x^(3) ,then prove that lim_(xto0) f(x).g(x) exists though lim_(xto0) f(x) does not exist.
Evalute lim_(x to 3) [9x - 14]
NCERT EXEMPLAR ENGLISH-LIMITS AND DERIVATIVES -FILLERS