Home
Class 11
MATHS
If arg(z-1)=arg(z+3i), then find (x-1):y...

If `arg(z-1)=arg(z+3i)`, then find `(x-1):y`, where `z=x+iy`.

Text Solution

AI Generated Solution

To solve the problem where \( \arg(z-1) = \arg(z+3i) \) and \( z = x + iy \), we will follow these steps: ### Step 1: Substitute \( z \) in the argument equation We start by substituting \( z = x + iy \) into the equation: \[ \arg(z - 1) = \arg(z + 3i) \] This gives us: ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|9 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|16 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|16 Videos
  • BINOMIAL THEOREM

    NCERT EXEMPLAR ENGLISH|Exercise True/False|7 Videos
  • CONIC SECTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|13 Videos

Similar Questions

Explore conceptually related problems

If arg(z-1)=arg(z+2i) , then find (x-1):y , where z=x+iy

If arg(z) lt 0, then find arg(-z) -arg(z) .

If z=a+ib satisfies "arg"(z-1)="arg"(z+3i) , then (a-1):b=

If Real ((2z-1)/(z+1)) =1, then locus of z is , where z=x+iy and i=sqrt(-1)

If Real ((2z-1)/(z+1)) =1, then locus of z is , where z=x+iy and i=sqrt(-1)

If arg(z_(1))=(2pi)/3 and arg(z_(2))=pi/2 , then find the principal value of arg(z_(1)z_(2)) and also find the quardrant of z_(1)z_(2) .

If a rg(z_1)=170^0 and arg(z_2)=70^0 , then find the principal argument of z_1z_2dot

If a rg(z_1)=170^0a n d arg(z_2)70^0 , then find the principal argument of z_1z_2dot

If z and w are two complex number such that |zw|=1 and arg (z) – arg (w) = pi/2, then show that overline zw = -i.

If z = x + iy and arg ((z-2)/(z+2))=pi/6, then find the locus of z.