Home
Class 11
MATHS
If |z + 1| = 1(z(1) ne - 1 ) and z(2) ...

If `|z + 1| = 1(z_(1) ne - 1 )` and `z_(2) =(z_(1)-1)/ (z_(1)-2)` , then show that the real part of `z_(2)` is zero.

Text Solution

Verified by Experts

Let `z_(1) = x + iy`
`rArr |z_(1)| = sqrt(x^(2) + y ^(2)) = 1" "[:. |z_(1)|= 1, given ] ….(i)`
Now, `z_(2) = (z_(1)-1)/(z_(1)-2) = (x + iy -1)/(x + iy + 1)`
` = (x - 1 +iy)/(x + 1 + ly) =((x - 1 + iy)(x + 1 - iy))/((x +1 + iy)(x + 1 - iy))`
` = (x^(2)- 1 + ly (x + 1) - iy(x - 1) - i^(2)y^(2))/((x +1^(2))-i^(2)y^(2))`
` = (x^(2)- 1 + iyx + iy-ixy +iy + y^(2)) /((x +1^(2))+y^(2))`
` = (x^(2)+ y^(2)- 1 2iy)/((x +1^(2))+y^(2))=(1-1=2iy)/((x+1)^(2)+y^(2))" " [:x^(2) + y^(2) =1]`
Hence, the real part of `z_(2)` is zero.
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|9 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|16 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|16 Videos
  • BINOMIAL THEOREM

    NCERT EXEMPLAR ENGLISH|Exercise True/False|7 Videos
  • CONIC SECTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|13 Videos

Similar Questions

Explore conceptually related problems

If z_1 is a complex number other than -1 such that |z_1|=1\ a n d\ z_2=(z_1-1)/(z_1+1) , then show that the real parts of z_2 is zero.

if z_(1) =-1 + 3i and z_(2)= 2 + i then find 2(z_(1) +z_(2))

If z_(1) = 1 +iand z_(2) = -3+2i then lm ((z_(1)z_(2))/barz_(1)) is

If z_(1) = 2 - i , z_(2) = 1 + i , " find " |(z_(1) + z_(2) + 1)/( z_(1) -z_(2) + 1)|

z_(1) "the"z_(2) "are two complex numbers such that" |z_(1)| = |z_(2)| . "and" arg (z_(1)) + arg (z_(2) = pi," then show that "z_(1) = - barz_(2).

if z_(1)=3+i and z_(2) = 2-i, " then" |(z_(1) +z_(2)-1)/(z_(1) -z_(2)+i)| is

Let z_(1)=2-i and z_(2)=2+i , then "Im"((1)/(z_(1)z_(2))) is

if z_(1) =2+3i and z_(2) = 1+i then find, |z_(1)+z_(2)|

if z_(1) = 3i and z_(2) =1 + 2i , then find z_(1)z_(2) -z_(1)

If z_1ne-z_2 and |z_1+z_2|=|1/z_1 + 1/z_2| then :