Home
Class 11
MATHS
If z(1),z(2) and z(3), z(4) are two pair...

If `z_(1),z_(2)` and `z_(3), z_(4)` are two pairs of conjugate complex numbers, the find the value of `arg(z_(1)/z_(4)) + arg(z_(2)//z_(3))`.

Text Solution

Verified by Experts

Let `z_(1) = r_(1)(costheta_(1) + I sintheta_(1))`,
Then, `z_(2) = barz_(1) = r_(1) (costheta_(1)- i sintheta_(1)) = r_(1)[cos(-theta_(1))+sin(-theta_(1))]`
Also, let `z _(3) = r_(2)(costheta_(2) + isintheta_(2))`,
Then, `z_(4) = barz_(3) = r_(2) (costheta _(2)-isin theta_(2))`
arg `((z_(1))/(z_(4))) + arg ((z_(2))/(z_(3))) = arg (z_(1))-arg(z_(4)) +arg(z_(2))-arg(z_(3))`
`=theta_(1)-(-theta_(2)+(-theta_(1))-theta_(2)" "[:.arg (z)=theta] `
`=theta_(1)+theta_(2)-theta_(1)-theta_(2) =0`
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|9 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|16 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|16 Videos
  • BINOMIAL THEOREM

    NCERT EXEMPLAR ENGLISH|Exercise True/False|7 Videos
  • CONIC SECTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|13 Videos

Similar Questions

Explore conceptually related problems

If z_1, z_2a n dz_3, z_4 are two pairs of conjugate complex numbers, then find the value of "a r g"(z_1//z_4)+a r g(z_2//z_3)dot

If z_(1),z_(2),z_(3),z_(4) are two pairs of conjugate complex numbers, then arg(z_(1)/z_(3)) + arg(z_(2)/z_(4)) is

If z_1, z_2a n dz_3, z_4 are two pairs of conjugate complex numbers, find the a rg((z1)/(z4))+a rg((z2)/(z3)) =0

If z_1,z_2 and z_3,z_4 are two pairs of conjugate complex numbers then arg(z_1/z_4)+arg(z_2/z_3)=

If z_(1),z_(2) and z_(3) be unimodular complex numbers, then the maximum value of |z_(1)-z_(2)|^(2)+|z_(2)-z_(3)|^(2)+|z_(3)-z_(1)|^(2) , is

If arg (z_(1)z_(2))=0 and |z_(1)|=|z_(2)|=1 , then

Find the value of z, if |z |= 4 and arg (z) = (5pi)/(6) .

For any two complex numbers z_(1),z_(2) the values of |z_(1)+z_(2)|^(2)+|z_(1)-z_(2)|^(2) , is

Let z_(1),z_(2),z_(3),z_(4) are distinct complex numbers satisfying |z|=1 and 4z_(3) = 3(z_(1) + z_(2)) , then |z_(1) - z_(2)| is equal to

Find the locus of z if arg ((z-1)/(z+1))= pi/4