Home
Class 11
MATHS
What is the conjugate of (2-i)/((1-2i)^(...

What is the conjugate of `(2-i)/((1-2i)^(2))`?

Text Solution

AI Generated Solution

To find the conjugate of the expression \(\frac{2-i}{(1-2i)^2}\), we will follow these steps: ### Step 1: Simplify the denominator First, we need to simplify \((1-2i)^2\). \[ (1-2i)^2 = 1^2 - 2 \cdot 1 \cdot 2i + (2i)^2 = 1 - 4i + 4i^2 \] ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|16 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|14 Videos
  • BINOMIAL THEOREM

    NCERT EXEMPLAR ENGLISH|Exercise True/False|7 Videos
  • CONIC SECTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|13 Videos

Similar Questions

Explore conceptually related problems

Write the conjugate of (2-i)/((1-2i)^2) .

The conjugate of (1)/(1-2i) is

Write the conjugate of (1-i)/(1+i)

The conjugate of (1)/(5-7i) is

Find the conjugate of ((1-2i)^(2))/(2 + i)

Write the conjugate of i^(7)

Find the conjugate of 1/(2 +5i)

Write the conjugate of (6+5i)^(2)

Write the conjugate of (3+4i)^(2)

The conjugate of (1)/(4+5i) is