Home
Class 11
MATHS
If |z(1)|=|z(2)|, "is it necesssary that...

If `|z_(1)|=|z_(2)|, "is it necesssary that "z_(1) = z_(2)`.

Text Solution

AI Generated Solution

To determine whether \( z_1 = z_2 \) if \( |z_1| = |z_2| \), we can analyze the properties of complex numbers and their magnitudes. ### Step-by-Step Solution: 1. **Understanding the Magnitude of Complex Numbers**: - The magnitude (or modulus) of a complex number \( z \) is defined as the distance from the origin in the complex plane. For a complex number \( z = x + yi \), where \( x \) and \( y \) are real numbers, the magnitude is given by: \[ |z| = \sqrt{x^2 + y^2} ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|16 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|14 Videos
  • BINOMIAL THEOREM

    NCERT EXEMPLAR ENGLISH|Exercise True/False|7 Videos
  • CONIC SECTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|13 Videos

Similar Questions

Explore conceptually related problems

If z_(1) and z_(2) are two complex numbers such that |z_(1)|= |z_(2)| , then is it necessary that z_(1) = z_(2)

If z_(1)=3 + 4i,z_(2)= 8-15i , verify that |z_(1) + z_(2)| lt |z_(1)| + |z_(2)|

If z_(1)=3 + 4i,z_(2)= 8-15i , verify that |z_(1) + z_(2)|^(2) + |z_(1)-z_(2)|^(2)= 2(|z_(1)|^(2) + |z_(2)|^(2))

If |z_(1)|= |z_(2)|= ….= |z_(n)|=1 , prove that |z_(1) + z_(2) + …+ z_(n)|= |(1)/(z_(1)) + (1)/(z_(2)) + …(1)/(z_(n))|

If |z_(1)|=|z_(2)|=1 , then prove that [{:(,z_(1),-z_(2)),(,bar(z)_(2),bar(z)_(1)):}] [{:(,bar(z)_(1),z_(2)),(,-bar(z)_(2),z_(1)):}]=[{:(,1//2,0),(,0,1//2):}]

If z_(1)=3 + 4i,z_(2)= 8-15i , verify that |z_(1)z_(2) |= |z_(1)| |z_(2)|

If the complex numbers z_(1), z_(2), z_(3) represent the vertices of an equilateral triangle, and |z_(1)|= |z_(2)| = |z_(3)| , prove that z_(1)+ z_(2) + z_(3)=0

If z_(1)=2 + 7i and z_(2)=1- 5i , then verify that |z_(1)z_(2)|= |z_(1)||z_(2)|

If z_(1)=3 + 4i,z_(2)= 8-15i , verify that |(z_(1))/(z_(2))|= (|z_(1)|)/(|z_(2)|)

If z_(1)=2 + 7i and z_(2)=1- 5i , then verify that |z_(1) + z_(2)| le |z_(1)| + |z_(2)|