Home
Class 11
MATHS
Find the value of z, if |z |= 4 and arg ...

Find the value of z, if `|z |= 4 and arg (z) = (5pi)/(6)`.

Text Solution

AI Generated Solution

To find the value of \( z \) given that \( |z| = 4 \) and \( \arg(z) = \frac{5\pi}{6} \), we can use the polar form of a complex number. The polar form is given by: \[ z = r (\cos \theta + i \sin \theta) \] where \( r \) is the modulus and \( \theta \) is the argument. ...
Promotional Banner

Topper's Solved these Questions

  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|16 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|14 Videos
  • BINOMIAL THEOREM

    NCERT EXEMPLAR ENGLISH|Exercise True/False|7 Videos
  • CONIC SECTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|13 Videos

Similar Questions

Explore conceptually related problems

If |z|=2 and arg (z)=pi/4 , find z .

If a complex number z satisfies |z| = 1 and arg(z-1) = (2pi)/(3) , then ( omega is complex imaginary number)

Find the locus of z if arg ((z-1)/(z+1))= pi/4

Find z ,\ if\ |z|=4\ and \ arg(z)=(5pi)/6 where z represents a complex number. .

If arg z = pi/4 ,then

if arg(z+a)=pi/6 and arg(z-a)=(2pi)/3 then

If z_1 lies on |z-3| + |z + 3| = 8 such that arg z_1 = pi//6 , then 37|z_1 |^(2) = _________.

The area bounded by the curves arg z = pi/3 and arg z = 2 pi /3 and arg(z-2-2isqrt3) = pi in the argand plane is (in sq. units)

Find the locus of a complex number z such that arg ((z-2)/(z+2))= (pi)/(3)

If z=(-2)/(1+isqrt(3)) , then the value of "arg"(z) is a. pi b. pi/4 c. pi/3 d. (2pi)/3