Home
Class 11
MATHS
Show that the point (x ,y) given by x=(2...

Show that the point `(x ,y)` given by `x=(2a t)/(1+t^2)a n dy=((1-t^2)/(1+t^2))` lies on a circle for all real values of `t` such that `-1lt=tlt=1,` where a is any given real number.

Text Solution

AI Generated Solution

To show that the point \((x, y)\) given by \[ x = \frac{2a t}{1 + t^2}, \quad y = \frac{1 - t^2}{1 + t^2} \] lies on a circle for all real values of \(t\) such that \(-1 \leq t \leq 1\), where \(a\) is any given real number, we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • CONIC SECTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Long answer|10 Videos
  • CONIC SECTIONS

    NCERT EXEMPLAR ENGLISH|Exercise True/False|8 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|16 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|16 Videos

Similar Questions

Explore conceptually related problems

Find (dy)/(dx) , when x=(2t)/(1+t^2) and y=(1-t^2)/(1+t^2)

Find (dy)/(dx), when x=(3a t)/(1+t^2)" and "y =(3a t^2)/(1+t^2)

If x=(2t)/(1+t^2) , y=(1-t^2)/(1+t^2) , then find (dy)/(dx) .

Find (dy)/(dx) , when x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2)

If x=(2t)/(1+t^2),y=(1-t^2)/(1+t^2),t h e nfin d(dy)/(dx)a tt=2.

If x=(1-t^2)/(1+t^2) and y=(2t)/(1+t^2) ,then (dy)/(dx)=

A function y=f(x) is given by x=1/(1+t^2) and y=1/(t(1+t^2)) for all tgt0 then f is

Prove that the point {(a)/(2)(t+(1)/(t)), (b)/(2)(t-(1)/(t))} lies on the hyperbola for all values of t(tne0) .

Discuss monotonocity of y=f(x) which is griven by x=1/(1+t^2)a n dy=1/(t(1+t^2))

If x=(1-t^2)/(1+t^2) and y=(2at)/(1+t^2) , then (dy)/(dx)=