Home
Class 11
MATHS
If the line l x+m y+n=0 touches the para...

If the line `l x+m y+n=0` touches the parabola `y^2=4a x ,` prove that `ln=a m^2`

Text Solution

Verified by Experts

True
Given equation of a line is
lx+my+n=0
and parabola`y^(2)`=4ax
From Eq. (i), x=`-((my+n)/l)`put in Eq. (ii) we get
`y^(2)=-(4a(my+n))/l`
`rArr ly^(2)=-4amy-4ax`
`rArrly^(2)+3amy+4an=0`
For tangent, D=0
`rArr16a^(2)m^(2)=4lxx4an`
`rArr 16a^(2)m^(2)=16anl`
`rArr am^(2)=nl`
Promotional Banner

Topper's Solved these Questions

  • CONIC SECTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|6 Videos
  • CONIC SECTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective type|13 Videos
  • CONIC SECTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Long answer|10 Videos
  • COMPLEX NUMBERS AND QUADRATIC EQUATIONS

    NCERT EXEMPLAR ENGLISH|Exercise OBJECTIVE TYPE QUESTIONS|16 Videos
  • INTRODUCTION TO THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|16 Videos

Similar Questions

Explore conceptually related problems

If the line y=mx+c touches the parabola y^(2)=4a(x+a) , then

If the line y=mx+c touches the parabola y^(2)=4a(x+a) , then

If the line l x+m y+n=0 touches the circle x^2+y^2=a^2 , then prove that (l^2+m^2)a^2=n^2dot

The line 4x+6y+9 =0 touches the parabola y^(2)=4ax at the point

If the line l x+m y-1=0 touches the circle x^2+y^2=a^2 , then prove that (l , m) lies on a circle.

If the line l x+m y-1=0 touches the circle x^2+y^2=a^2 , then prove that (l , m) lies on a circle.

If the line x + y = 1 touches the parabola y^2-y + x = 0 , then the coordinates of the point of contact are:

Show that the line x + y = 1 touches the parabola y = x-x ^(2).

Show that the line x + ny + an ^(2) =0 touches the parabola y ^(2) = 4 ax and find the point of contact.

Prove that the line x/l+y/m=1 touches the parabola y^2=4a(x+b) , if m^2(l+b)+al^2=0 .