Home
Class 12
MATHS
If f,g: RvecR are defined respectively b...

If `f,g: RvecR` are defined respectively by `f(x)=x^2+3x+1,g(x)=2x-3,` find fog (ii) gof (iii) fof (iv) gog.

Text Solution

AI Generated Solution

The correct Answer is:
Let's solve the problem step by step. ### Given Functions: 1. \( f(x) = x^2 + 3x + 1 \) 2. \( g(x) = 2x - 3 \) ### (i) Find \( f(g(x)) \) or \( f \circ g \): To find \( f(g(x)) \), we will substitute \( g(x) \) into \( f(x) \). 1. Substitute \( g(x) \) into \( f(x) \): \[ f(g(x)) = f(2x - 3) = (2x - 3)^2 + 3(2x - 3) + 1 \] 2. Expand \( (2x - 3)^2 \): \[ (2x - 3)^2 = 4x^2 - 12x + 9 \] 3. Expand \( 3(2x - 3) \): \[ 3(2x - 3) = 6x - 9 \] 4. Combine all parts: \[ f(g(x)) = 4x^2 - 12x + 9 + 6x - 9 + 1 \] \[ = 4x^2 - 6x + 1 \] ### (ii) Find \( g(f(x)) \) or \( g \circ f \): To find \( g(f(x)) \), we will substitute \( f(x) \) into \( g(x) \). 1. Substitute \( f(x) \) into \( g(x) \): \[ g(f(x)) = g(x^2 + 3x + 1) = 2(x^2 + 3x + 1) - 3 \] 2. Expand: \[ g(f(x)) = 2x^2 + 6x + 2 - 3 \] \[ = 2x^2 + 6x - 1 \] ### (iii) Find \( f(f(x)) \) or \( f \circ f \): To find \( f(f(x)) \), we will substitute \( f(x) \) into itself. 1. Substitute \( f(x) \) into \( f(x) \): \[ f(f(x)) = f(x^2 + 3x + 1) = (x^2 + 3x + 1)^2 + 3(x^2 + 3x + 1) + 1 \] 2. Expand \( (x^2 + 3x + 1)^2 \): \[ = x^4 + 6x^3 + 9x^2 + 6x + 1 \] 3. Expand \( 3(x^2 + 3x + 1) \): \[ = 3x^2 + 9x + 3 \] 4. Combine all parts: \[ f(f(x)) = x^4 + 6x^3 + 9x^2 + 6x + 1 + 3x^2 + 9x + 3 + 1 \] \[ = x^4 + 6x^3 + 12x^2 + 15x + 5 \] ### (iv) Find \( g(g(x)) \) or \( g \circ g \): To find \( g(g(x)) \), we will substitute \( g(x) \) into itself. 1. Substitute \( g(x) \) into \( g(x) \): \[ g(g(x)) = g(2x - 3) = 2(2x - 3) - 3 \] 2. Expand: \[ = 4x - 6 - 3 \] \[ = 4x - 9 \] ### Final Answers: 1. \( f(g(x)) = 4x^2 - 6x + 1 \) 2. \( g(f(x)) = 2x^2 + 6x - 1 \) 3. \( f(f(x)) = x^4 + 6x^3 + 12x^2 + 15x + 5 \) 4. \( g(g(x)) = 4x - 9 \)

Let's solve the problem step by step. ### Given Functions: 1. \( f(x) = x^2 + 3x + 1 \) 2. \( g(x) = 2x - 3 \) ### (i) Find \( f(g(x)) \) or \( f \circ g \): To find \( f(g(x)) \), we will substitute \( g(x) \) into \( f(x) \). ...
Promotional Banner

Topper's Solved these Questions

  • RELATIONS AND FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Questions|20 Videos
  • RELATIONS AND FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|15 Videos
  • RELATIONS AND FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|15 Videos
  • PROBABILITY

    NCERT EXEMPLAR ENGLISH|Exercise True/False|9 Videos
  • THREE DIMENSIONAL GEOMETRY

    NCERT EXEMPLAR ENGLISH|Exercise LONG ANSWER TYPE QUESTIONS|16 Videos

Similar Questions

Explore conceptually related problems

If f,g: R -R are defined respectively by f(x)=x^2+3x+1,g(x)=2x-3, find fog (ii) gof (iii) fof (iv) gog.

If f, g : R rarr R be defined respectively by f(x) = 3x + 2 and g(x) = 6x + 5. Find f-g.

If f, g : R rarr R be defined respectively by f(x) = 8x + 7 and g(x) = 3x - 1. Find f-g.

Let f, g : R -> R be defined, respectively by f(x) = x + 1 , g(x) = 2x-3 . Find f + g , f-g and f/g .

Let f, g : R rarr R be defined respectively by f(x) = 2x + 3 and g(x) = x - 10. Find f-g.

Let f, g : R -> R be defined, respectively by f(x)" "=" "x" "+" "1 , g(x)" "=" "2x" + "3 . Find f" "+" "g," "f" - "g and f/g .

If f: R->R and g: R->R be functions defined by f(x)=x^2+1 and g(x)=sinx , then find fog and gof .

If f,g:R->R be two functions defined as f(x)=|x|+x and g(x)=|x|-x . Find fog and gof . Hence find fog(-3) , fog(5) and gof(-2) .

If f and g are two real valued functions defined as f(x) =2x +1 and g (x) =x^(2) +1 then find (i) f+g (ii) f-g (iii) fg (iv) (f)/(g)

Let f: RvecR and g: RvecR be defined by f(x)=x^2 and g(x)=x+1. Show that fog!=gofdot