Home
Class 12
MATHS
Evaluate: tan^(-1)(tan(5pi)/6)+cos^(-1){...

Evaluate: `tan^(-1)(tan(5pi)/6)+cos^(-1){cos((13pi)/6)}`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the expression \( \tan^{-1}(\tan(5\pi/6)) + \cos^{-1}(\cos(13\pi/6)) \), we will follow these steps: ### Step 1: Evaluate \( \tan^{-1}(\tan(5\pi/6)) \) The function \( \tan^{-1}(x) \) is defined for \( x \) in the range \(-\frac{\pi}{2} < x < \frac{\pi}{2}\). 1. First, we need to find \( \tan(5\pi/6) \). \[ \tan(5\pi/6) = \tan(\pi - \frac{\pi}{6}) = -\tan(\frac{\pi}{6}) = -\frac{1}{\sqrt{3}} \] 2. Now, we find \( \tan^{-1}(-\frac{1}{\sqrt{3}}) \). Since \(-\frac{1}{\sqrt{3}}\) is within the range of \( \tan^{-1} \), we can directly find: \[ \tan^{-1}(-\frac{1}{\sqrt{3}}) = -\frac{\pi}{6} \] ### Step 2: Evaluate \( \cos^{-1}(\cos(13\pi/6)) \) The function \( \cos^{-1}(x) \) is defined for \( x \) in the range \( 0 \leq x \leq \pi \). 1. First, we need to find \( \cos(13\pi/6) \). \[ 13\pi/6 = 2\pi + \frac{\pi}{6} \quad (\text{since } 2\pi = 12\pi/6) \] Thus, \[ \cos(13\pi/6) = \cos(\frac{\pi}{6}) = \frac{\sqrt{3}}{2} \] 2. Now, we find \( \cos^{-1}(\frac{\sqrt{3}}{2}) \). Since \( \frac{\sqrt{3}}{2} \) is within the range of \( \cos^{-1} \), we can directly find: \[ \cos^{-1}(\frac{\sqrt{3}}{2}) = \frac{\pi}{6} \] ### Step 3: Combine the results Now we combine the results from Step 1 and Step 2: \[ \tan^{-1}(\tan(5\pi/6)) + \cos^{-1}(\cos(13\pi/6)) = -\frac{\pi}{6} + \frac{\pi}{6} = 0 \] ### Final Answer Thus, the final result is: \[ \boxed{0} \]

To evaluate the expression \( \tan^{-1}(\tan(5\pi/6)) + \cos^{-1}(\cos(13\pi/6)) \), we will follow these steps: ### Step 1: Evaluate \( \tan^{-1}(\tan(5\pi/6)) \) The function \( \tan^{-1}(x) \) is defined for \( x \) in the range \(-\frac{\pi}{2} < x < \frac{\pi}{2}\). 1. First, we need to find \( \tan(5\pi/6) \). \[ \tan(5\pi/6) = \tan(\pi - \frac{\pi}{6}) = -\tan(\frac{\pi}{6}) = -\frac{1}{\sqrt{3}} ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Qns|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate: tan^(-1)(tan frac(6pi)(7))

Find the value of tan^(-1) (-tan.(13pi)/(8)) + cot^(-1) (-cot((9pi)/(8)))

Value of cos^(-1) cos(13pi)/(6) is

cos[tan^(-1){tan((15pi)/4)}]

Evaluate : cos^(-1)(cos""(13pi)/6)+tan^(-1)(tan""(7pi)/6) .

Show that sin^(- 1)(sin((33pi)/7))+cos^(- 1)(cos((46pi)/7))+tan^-1(-tan((13pi)/8))+cot^-1(cot(-(19pi)/8))=(13pi)/7

Evaluate each of the following: sin^(-1)(sin(2pi)/3) (ii) cos^(-1)(cos(7pi)/6) (iii) tan^(-1)(tan(3pi)/4)

Evaluate each of the following: (i) cos^(-1)(cos((13pi)/6)) (ii) cos^(-1)(cos3) (iii) cos^(-1)(cos4)

The value of the expression sin^(-1)(sin(22pi)/7)cos^(-1)(cos(5pi)/3)+tan^(-1)(tan(5pi)/7)+sin^(-1)(cos2) is (17pi)/(42)-2 (b) -2 (-pi)/(21)-2 (d) non eoft h e s e

Evaluate the following: 1. sin^(-1)(s i n(2pi)/3) 2. cos^(-1)(c o s(7pi)/6) 3. tan^(-1)(t a n(2pi)/3)

NCERT EXEMPLAR ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Fillers
  1. Evaluate: tan^(-1)(tan(5pi)/6)+cos^(-1){cos((13pi)/6)}

    Text Solution

    |

  2. The principal value of cos^(-1)(-1/2) is

    Text Solution

    |

  3. The value of sin^(-1)(sin'(3pi)/(5)) is "….."

    Text Solution

    |

  4. If cos(tan^(-1)x+cot^(-1)sqrt(3))=0 , find the value of xdot

    Text Solution

    |

  5. The set of values of sec^(-1)(1/2) is "……….."

    Text Solution

    |

  6. The principal value of tan^(-1)sqrt(3) is "……."

    Text Solution

    |

  7. The value of cos^(-1)(cos'(14pi)/(3)) is "…….."

    Text Solution

    |

  8. The value of cos(sin^(-1)x + cos^(-1)x), where |x| le 1, is

    Text Solution

    |

  9. The value of tan((sin^(-1)x+cos^(-1)x)/(2)), when x = (sqrt(3))/(2), i...

    Text Solution

    |

  10. If y = 2tan^(-1)x+sin^(-1)((2x)/(1+x^(2))), then "………"lt y lt "………".

    Text Solution

    |

  11. The result tan^(-1)x-tan^(-1)y = tan^(-1)((x-y)/(1+xy)) is true whe...

    Text Solution

    |

  12. The value of cot^(-1)(-x) x in R in terms of cot^(-1)x is "…….."

    Text Solution

    |

  13. All trigonometric functions have inverse over their respective domin...

    Text Solution

    |

  14. The value of the expression (cos^(-1)x)^(2) is equal to sec^(2)x.

    Text Solution

    |

  15. The domain of trigonometric functions can be restricted to any one o...

    Text Solution

    |

  16. The least numerical value, either positive or negative of angle thet...

    Text Solution

    |

  17. The graph of inverse trigonometric function can be obtained from th...

    Text Solution

    |

  18. The minimum value of n for which tan^(-1)'n/pi gt (pi)/(4), n in N, i...

    Text Solution

    |

  19. The principal value of sin^(-1)[cos(sin^(-1)'1/2)] is pi/3.

    Text Solution

    |