Home
Class 12
MATHS
cos{cos^(- 1)((-sqrt(3))/2)+pi/6}...

`cos{cos^(- 1)((-sqrt(3))/2)+pi/6}`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the expression \( \cos\left(\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) + \frac{\pi}{6}\right) \), we can follow these steps: ### Step 1: Find \( \cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) \) The value of \( \cos^{-1}(x) \) gives us an angle \( \theta \) such that \( \cos(\theta) = x \). We need to find \( \theta \) for \( x = -\frac{\sqrt{3}}{2} \). The cosine function is negative in the second quadrant. The reference angle whose cosine is \( \frac{\sqrt{3}}{2} \) is \( \frac{\pi}{6} \). Therefore, in the second quadrant, we have: \[ \theta = \pi - \frac{\pi}{6} = \frac{5\pi}{6} \] So, we have: \[ \cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) = \frac{5\pi}{6} \] ### Step 2: Substitute back into the expression Now we substitute this value back into the original expression: \[ \cos\left(\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) + \frac{\pi}{6}\right) = \cos\left(\frac{5\pi}{6} + \frac{\pi}{6}\right) \] ### Step 3: Simplify the angle Now we simplify the angle: \[ \frac{5\pi}{6} + \frac{\pi}{6} = \frac{6\pi}{6} = \pi \] ### Step 4: Find \( \cos(\pi) \) Now we need to find \( \cos(\pi) \): \[ \cos(\pi) = -1 \] ### Final Answer Thus, the final answer is: \[ \cos\left(\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) + \frac{\pi}{6}\right) = -1 \] ---

To solve the expression \( \cos\left(\cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) + \frac{\pi}{6}\right) \), we can follow these steps: ### Step 1: Find \( \cos^{-1}\left(-\frac{\sqrt{3}}{2}\right) \) The value of \( \cos^{-1}(x) \) gives us an angle \( \theta \) such that \( \cos(\theta) = x \). We need to find \( \theta \) for \( x = -\frac{\sqrt{3}}{2} \). The cosine function is negative in the second quadrant. The reference angle whose cosine is \( \frac{\sqrt{3}}{2} \) is \( \frac{\pi}{6} \). Therefore, in the second quadrant, we have: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Qns|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|2 Videos

Similar Questions

Explore conceptually related problems

The value of cos[cos^(-1) (-sqrt3/2)+pi/6)]

sin^-1 (cos(sin^-1(sqrt(3)/2))= (A) pi/3 (B) pi/6 (C) - pi/6 (D) none of these

cos^(-1)("cos"(2cot^(-1)(sqrt(2)-1))) is equal to sqrt(2)-1 (b) pi/4 (c) (3pi)/4 (d) non eoft h e s e

For the principal values, evaluate the following: sin^(-1)(-(sqrt(3))/2)+cos e c^(-1)(-2/(sqrt(3))) sec^(-1)(sqrt(2))+2cos e c^(-1)(-sqrt(2)) sin^(-1)[cos{2cos e c^(-1)(-2)}] cos e c^(-1)(2tan(11pi)/6)

For the principal values, evaluate the following: sin^(-1)(-(sqrt(3))/2)+cos e c^(-1)(-2/(sqrt(3))) sec^(-1)(sqrt(2))+2cos e c^(-1)(-sqrt(2)) sin^(-1)[cos{2cos e c^(-1)(-2)}] cos e c^(-1)(2tan(11pi)/6)

The value of cos^(-1)(cos'(3pi)/(2)) is

The value of cos^(-1)sqrt(2/3)-cos^(-1)((sqrt(6)+1)/(2sqrt(3))) is equal to (A) pi/3 (B) pi/4 (C) pi/2 (D) pi/6

The principal value of sin^(-1)((sqrt(3))/(2))+cos^(-1)(cos((pi)/(6))) , is :

Prove that cos^(-1) (sqrt(1/3))-cos^(-1) (sqrt((1)/(6)))+cos^(-1) ((sqrt(10)-1)/(3sqrt2))=cos^(-1) (2/3)

The value of cos^(-1)(cos(2tan^(-1)((sqrt(3)+1)/(sqrt(4-2sqrt(3)))))) is

NCERT EXEMPLAR ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Fillers
  1. cos{cos^(- 1)((-sqrt(3))/2)+pi/6}

    Text Solution

    |

  2. The principal value of cos^(-1)(-1/2) is

    Text Solution

    |

  3. The value of sin^(-1)(sin'(3pi)/(5)) is "….."

    Text Solution

    |

  4. If cos(tan^(-1)x+cot^(-1)sqrt(3))=0 , find the value of xdot

    Text Solution

    |

  5. The set of values of sec^(-1)(1/2) is "……….."

    Text Solution

    |

  6. The principal value of tan^(-1)sqrt(3) is "……."

    Text Solution

    |

  7. The value of cos^(-1)(cos'(14pi)/(3)) is "…….."

    Text Solution

    |

  8. The value of cos(sin^(-1)x + cos^(-1)x), where |x| le 1, is

    Text Solution

    |

  9. The value of tan((sin^(-1)x+cos^(-1)x)/(2)), when x = (sqrt(3))/(2), i...

    Text Solution

    |

  10. If y = 2tan^(-1)x+sin^(-1)((2x)/(1+x^(2))), then "………"lt y lt "………".

    Text Solution

    |

  11. The result tan^(-1)x-tan^(-1)y = tan^(-1)((x-y)/(1+xy)) is true whe...

    Text Solution

    |

  12. The value of cot^(-1)(-x) x in R in terms of cot^(-1)x is "…….."

    Text Solution

    |

  13. All trigonometric functions have inverse over their respective domin...

    Text Solution

    |

  14. The value of the expression (cos^(-1)x)^(2) is equal to sec^(2)x.

    Text Solution

    |

  15. The domain of trigonometric functions can be restricted to any one o...

    Text Solution

    |

  16. The least numerical value, either positive or negative of angle thet...

    Text Solution

    |

  17. The graph of inverse trigonometric function can be obtained from th...

    Text Solution

    |

  18. The minimum value of n for which tan^(-1)'n/pi gt (pi)/(4), n in N, i...

    Text Solution

    |

  19. The principal value of sin^(-1)[cos(sin^(-1)'1/2)] is pi/3.

    Text Solution

    |