Home
Class 12
MATHS
Show that 2tan^-1 (-3)=-pi/2+tan^-1(-4/3...

Show that `2tan^-1 (-3)=-pi/2+tan^-1(-4/3)`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( 2 \tan^{-1}(-3) = -\frac{\pi}{2} + \tan^{-1}\left(-\frac{4}{3}\right) \), we will start with the left-hand side (LHS) and manipulate it to show that it equals the right-hand side (RHS). ### Step 1: Start with the LHS \[ LHS = 2 \tan^{-1}(-3) \] ### Step 2: Use the property of the inverse tangent function We know that: \[ \tan^{-1}(-x) = -\tan^{-1}(x) \] Applying this property, we have: \[ LHS = 2 \tan^{-1}(-3) = 2 \cdot (-\tan^{-1}(3)) = -2 \tan^{-1}(3) \] ### Step 3: Use the double angle formula for tangent The double angle formula for tangent states: \[ 2 \tan^{-1}(x) = \tan^{-1}\left(\frac{2x}{1-x^2}\right) \] Using this formula, we can rewrite \(-2 \tan^{-1}(3)\): \[ -2 \tan^{-1}(3) = -\tan^{-1}\left(\frac{2 \cdot 3}{1 - 3^2}\right) = -\tan^{-1}\left(\frac{6}{1 - 9}\right) = -\tan^{-1}\left(\frac{6}{-8}\right) = -\tan^{-1}\left(-\frac{3}{4}\right) \] ### Step 4: Use the property of the inverse tangent function again Using the property again: \[ -\tan^{-1}\left(-\frac{3}{4}\right) = \tan^{-1}\left(\frac{3}{4}\right) \] Thus, we have: \[ LHS = \tan^{-1}\left(\frac{3}{4}\right) \] ### Step 5: Now, let's evaluate the RHS \[ RHS = -\frac{\pi}{2} + \tan^{-1}\left(-\frac{4}{3}\right) \] Using the property of the inverse tangent function: \[ \tan^{-1}(-x) = -\tan^{-1}(x) \] We can rewrite the RHS: \[ RHS = -\frac{\pi}{2} - \tan^{-1}\left(\frac{4}{3}\right) \] ### Step 6: Use the identity for addition of angles We know that: \[ \tan^{-1}(a) + \tan^{-1}(b) = \tan^{-1}\left(\frac{a + b}{1 - ab}\right) \] If we let \( a = \frac{3}{4} \) and \( b = \frac{4}{3} \): \[ ab = \frac{3}{4} \cdot \frac{4}{3} = 1 \] Thus: \[ \tan^{-1}\left(\frac{3}{4}\right) + \tan^{-1}\left(\frac{4}{3}\right) = \frac{\pi}{2} \] So, \[ \tan^{-1}\left(\frac{3}{4}\right) = \frac{\pi}{2} - \tan^{-1}\left(\frac{4}{3}\right) \] ### Step 7: Substitute back into the RHS Now we can substitute this back into the RHS: \[ RHS = -\frac{\pi}{2} - \left(\frac{\pi}{2} - \tan^{-1}\left(\frac{4}{3}\right)\right) = -\frac{\pi}{2} - \frac{\pi}{2} + \tan^{-1}\left(\frac{4}{3}\right) = -\pi + \tan^{-1}\left(\frac{4}{3}\right) \] ### Conclusion Since both sides are equal: \[ LHS = RHS \] Thus, we have shown that: \[ 2 \tan^{-1}(-3) = -\frac{\pi}{2} + \tan^{-1}\left(-\frac{4}{3}\right) \]

To prove that \( 2 \tan^{-1}(-3) = -\frac{\pi}{2} + \tan^{-1}\left(-\frac{4}{3}\right) \), we will start with the left-hand side (LHS) and manipulate it to show that it equals the right-hand side (RHS). ### Step 1: Start with the LHS \[ LHS = 2 \tan^{-1}(-3) \] ### Step 2: Use the property of the inverse tangent function ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Qns|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|2 Videos

Similar Questions

Explore conceptually related problems

Show that tan^(-1) (1/2) +tan^(-1) (1/8) = tan^(-1) (3/4) - tan^(-1)(1/18)

Show that: cos(2tan^-1(1/7))=sin(4tan^-1(1/3))

prove that 2tan^-1 (1/3)+tan^-1 (1/7)=pi/4

Show that : "tan"^(-1)(1)/(4) +"tan"^(-1)(2)/(9) = (1)/(2) "cos"^(-1)(3)/(5) .

Show that: cos(2tan^(-1)(1/7))=sin(4tan^(-1)(1/3))

Prove that : tan^(-1)(1/2) + tan^(-1)(1/3) = tan^(-1)(3/5) + tan^(-1)(1/4) = pi/4

Prove that: tan^-1 (1/3)+tan^-1 (2/9)+tan^-1 (4/33)+… tooo= pi/4

Show that tan^(-1)1/2+tan^(-1)2/(11)=tan^(-1)3/4

show that tan^(-1)(1/2)+tan^(-1)(2/11)=tan^(-1)(3/4)

Prove that : tan^(-1)2+tan^(-1)3=(3pi)/4

NCERT EXEMPLAR ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Fillers
  1. Show that 2tan^-1 (-3)=-pi/2+tan^-1(-4/3)

    Text Solution

    |

  2. The principal value of cos^(-1)(-1/2) is

    Text Solution

    |

  3. The value of sin^(-1)(sin'(3pi)/(5)) is "….."

    Text Solution

    |

  4. If cos(tan^(-1)x+cot^(-1)sqrt(3))=0 , find the value of xdot

    Text Solution

    |

  5. The set of values of sec^(-1)(1/2) is "……….."

    Text Solution

    |

  6. The principal value of tan^(-1)sqrt(3) is "……."

    Text Solution

    |

  7. The value of cos^(-1)(cos'(14pi)/(3)) is "…….."

    Text Solution

    |

  8. The value of cos(sin^(-1)x + cos^(-1)x), where |x| le 1, is

    Text Solution

    |

  9. The value of tan((sin^(-1)x+cos^(-1)x)/(2)), when x = (sqrt(3))/(2), i...

    Text Solution

    |

  10. If y = 2tan^(-1)x+sin^(-1)((2x)/(1+x^(2))), then "………"lt y lt "………".

    Text Solution

    |

  11. The result tan^(-1)x-tan^(-1)y = tan^(-1)((x-y)/(1+xy)) is true whe...

    Text Solution

    |

  12. The value of cot^(-1)(-x) x in R in terms of cot^(-1)x is "…….."

    Text Solution

    |

  13. All trigonometric functions have inverse over their respective domin...

    Text Solution

    |

  14. The value of the expression (cos^(-1)x)^(2) is equal to sec^(2)x.

    Text Solution

    |

  15. The domain of trigonometric functions can be restricted to any one o...

    Text Solution

    |

  16. The least numerical value, either positive or negative of angle thet...

    Text Solution

    |

  17. The graph of inverse trigonometric function can be obtained from th...

    Text Solution

    |

  18. The minimum value of n for which tan^(-1)'n/pi gt (pi)/(4), n in N, i...

    Text Solution

    |

  19. The principal value of sin^(-1)[cos(sin^(-1)'1/2)] is pi/3.

    Text Solution

    |