Home
Class 12
MATHS
The number of real solutions of tan^(-1)...

The number of real solutions of `tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^2+x+1)=pi/2` is
`a. zero`
`b`. one
`c`. two
`d`. infinite

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \[ \tan^{-1}\sqrt{x(x+1)} + \sin^{-1}\sqrt{x^2+x+1} = \frac{\pi}{2}, \] we can follow these steps: ### Step 1: Use the identity for sine and cosine inverse We know that \[ \sin^{-1}(y) + \cos^{-1}(y) = \frac{\pi}{2}. \] This implies that if we have \[ \tan^{-1}(u) + \sin^{-1}(v) = \frac{\pi}{2}, \] then we can express \(\tan^{-1}(u)\) in terms of \(\cos^{-1}(v)\). ### Step 2: Set \(\theta = \tan^{-1}(\sqrt{x(x+1)})\) Let \[ \theta = \tan^{-1}(\sqrt{x(x+1)}). \] Then, we have \[ \tan(\theta) = \sqrt{x(x+1)}. \] ### Step 3: Express \(\cos(\theta)\) From the definition of tangent, we can construct a right triangle where the opposite side is \(\sqrt{x(x+1)}\) and the adjacent side is \(1\). The hypotenuse can be calculated as: \[ \text{Hypotenuse} = \sqrt{(\sqrt{x(x+1)})^2 + 1^2} = \sqrt{x(x+1) + 1} = \sqrt{x^2 + x + 1}. \] Thus, \[ \cos(\theta) = \frac{1}{\sqrt{x^2 + x + 1}}. \] ### Step 4: Substitute back into the equation Now, substituting back into the original equation gives us: \[ \cos^{-1}\left(\frac{1}{\sqrt{x^2 + x + 1}}\right) + \sin^{-1}\left(\sqrt{x^2 + x + 1}\right) = \frac{\pi}{2}. \] ### Step 5: Set the two expressions equal From the identity, we have: \[ \frac{1}{\sqrt{x^2 + x + 1}} = \sqrt{x^2 + x + 1}. \] ### Step 6: Square both sides Squaring both sides leads to: \[ 1 = (x^2 + x + 1). \] ### Step 7: Rearrange the equation Rearranging gives: \[ x^2 + x + 1 - 1 = 0 \implies x^2 + x = 0. \] ### Step 8: Factor the quadratic Factoring out \(x\): \[ x(x + 1) = 0. \] ### Step 9: Solve for \(x\) This gives us the solutions: \[ x = 0 \quad \text{or} \quad x = -1. \] ### Conclusion Thus, the number of real solutions to the equation is **2**.

To solve the equation \[ \tan^{-1}\sqrt{x(x+1)} + \sin^{-1}\sqrt{x^2+x+1} = \frac{\pi}{2}, \] we can follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Qns|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|2 Videos

Similar Questions

Explore conceptually related problems

The number of real solutions of tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^2+x+1)=pi/2 is a. z ero b. one c. two d. infinite

The number of real solution of cot^(-1)sqrt(x(x+3))+sin^(-1)sqrt(x^(2)+3x+1)=(pi)/(2) is /are

The number of real solution of cot^(-1)sqrt(x(x+4))+cos^(-1)sqrt(x^(2)+4x+1)=(pi)/(2) is equal to

Solve the equation: tan^(-1)sqrt(x^2+x)+sin^(-1)sqrt(x^2+x+1)=pi/2

The number of real solution(s) of the equation sin^(-1)sqrt(x^(2)-x+1)+cos^(-1)sqrt(x^(2)-x)=pi is/are

The number of solutions for the equation sin^(-1) sqrt((x^(2)-x+1))+cos^(-1)sqrt((x^(2)-x))=pi is :

The number of real solution of the equation tan^(-1) sqrt(x^2-3x +7) + cos^(-1) sqrt(4x^2-x + 3) = pi is

The number of the solutions of the equation 2 sin^(-1) sqrt(x^(2) + x + 1) + cos^(-1) sqrt(x^(2) + x) = (3pi)/(2) is

The number of real solution of the equation tan^(-1) sqrt(x^(2) - 3x + 2) + cos^(-1) sqrt(4x - x^(2) -3) = pi is

The sum of the solution of the equation 2sin^(-1)sqrt(x^2+x+1)+cos^(-1)sqrt(x^2+x)=(3pi)/2 is 0 (b) -1 (c) 1 (d) 2

NCERT EXEMPLAR ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Fillers
  1. The number of real solutions of tan^(-1)sqrt(x(x+1))+sin^(-1)sqrt(x^2+...

    Text Solution

    |

  2. The principal value of cos^(-1)(-1/2) is

    Text Solution

    |

  3. The value of sin^(-1)(sin'(3pi)/(5)) is "….."

    Text Solution

    |

  4. If cos(tan^(-1)x+cot^(-1)sqrt(3))=0 , find the value of xdot

    Text Solution

    |

  5. The set of values of sec^(-1)(1/2) is "……….."

    Text Solution

    |

  6. The principal value of tan^(-1)sqrt(3) is "……."

    Text Solution

    |

  7. The value of cos^(-1)(cos'(14pi)/(3)) is "…….."

    Text Solution

    |

  8. The value of cos(sin^(-1)x + cos^(-1)x), where |x| le 1, is

    Text Solution

    |

  9. The value of tan((sin^(-1)x+cos^(-1)x)/(2)), when x = (sqrt(3))/(2), i...

    Text Solution

    |

  10. If y = 2tan^(-1)x+sin^(-1)((2x)/(1+x^(2))), then "………"lt y lt "………".

    Text Solution

    |

  11. The result tan^(-1)x-tan^(-1)y = tan^(-1)((x-y)/(1+xy)) is true whe...

    Text Solution

    |

  12. The value of cot^(-1)(-x) x in R in terms of cot^(-1)x is "…….."

    Text Solution

    |

  13. All trigonometric functions have inverse over their respective domin...

    Text Solution

    |

  14. The value of the expression (cos^(-1)x)^(2) is equal to sec^(2)x.

    Text Solution

    |

  15. The domain of trigonometric functions can be restricted to any one o...

    Text Solution

    |

  16. The least numerical value, either positive or negative of angle thet...

    Text Solution

    |

  17. The graph of inverse trigonometric function can be obtained from th...

    Text Solution

    |

  18. The minimum value of n for which tan^(-1)'n/pi gt (pi)/(4), n in N, i...

    Text Solution

    |

  19. The principal value of sin^(-1)[cos(sin^(-1)'1/2)] is pi/3.

    Text Solution

    |