Home
Class 12
MATHS
Find the value of expression: sin(2tan^(...

Find the value of expression: `sin(2tan^(-1)(1/3))+cos(tan^(-1)2sqrt(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of the expression \( \sin(2\tan^{-1}(1/3)) + \cos(\tan^{-1}(2\sqrt{2})) \), we will follow a step-by-step approach. ### Step 1: Simplify \( \sin(2\tan^{-1}(1/3)) \) We use the double angle formula for sine: \[ \sin(2\theta) = 2\sin(\theta)\cos(\theta) \] Let \( \theta = \tan^{-1}(1/3) \). Then: \[ \sin(2\tan^{-1}(1/3)) = 2\sin(\tan^{-1}(1/3))\cos(\tan^{-1}(1/3)) \] ### Step 2: Find \( \sin(\tan^{-1}(1/3)) \) and \( \cos(\tan^{-1}(1/3)) \) Using the definition of tangent: \[ \tan(\theta) = \frac{\text{opposite}}{\text{adjacent}} = \frac{1}{3} \] We can form a right triangle where the opposite side is 1 and the adjacent side is 3. Using the Pythagorean theorem: \[ \text{hypotenuse} = \sqrt{1^2 + 3^2} = \sqrt{1 + 9} = \sqrt{10} \] Thus, we have: \[ \sin(\tan^{-1}(1/3)) = \frac{1}{\sqrt{10}}, \quad \cos(\tan^{-1}(1/3)) = \frac{3}{\sqrt{10}} \] ### Step 3: Substitute back into the sine expression Now substituting these values back: \[ \sin(2\tan^{-1}(1/3)) = 2 \cdot \frac{1}{\sqrt{10}} \cdot \frac{3}{\sqrt{10}} = \frac{6}{10} = \frac{3}{5} \] ### Step 4: Simplify \( \cos(\tan^{-1}(2\sqrt{2})) \) Let \( \alpha = \tan^{-1}(2\sqrt{2}) \). Then: \[ \tan(\alpha) = 2\sqrt{2} \] This implies a right triangle where the opposite side is \( 2\sqrt{2} \) and the adjacent side is 1. Using the Pythagorean theorem: \[ \text{hypotenuse} = \sqrt{(2\sqrt{2})^2 + 1^2} = \sqrt{8 + 1} = \sqrt{9} = 3 \] Thus: \[ \cos(\tan^{-1}(2\sqrt{2})) = \frac{1}{3} \] ### Step 5: Combine the results Now we can combine the results: \[ \sin(2\tan^{-1}(1/3)) + \cos(\tan^{-1}(2\sqrt{2})) = \frac{3}{5} + \frac{1}{3} \] ### Step 6: Find a common denominator and simplify The common denominator for \( 5 \) and \( 3 \) is \( 15 \): \[ \frac{3}{5} = \frac{9}{15}, \quad \frac{1}{3} = \frac{5}{15} \] Thus: \[ \frac{3}{5} + \frac{1}{3} = \frac{9}{15} + \frac{5}{15} = \frac{14}{15} \] ### Final Answer The value of the expression is: \[ \boxed{\frac{14}{15}} \]

To find the value of the expression \( \sin(2\tan^{-1}(1/3)) + \cos(\tan^{-1}(2\sqrt{2})) \), we will follow a step-by-step approach. ### Step 1: Simplify \( \sin(2\tan^{-1}(1/3)) \) We use the double angle formula for sine: \[ \sin(2\theta) = 2\sin(\theta)\cos(\theta) \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Qns|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|2 Videos

Similar Questions

Explore conceptually related problems

Find the value of the expression sin[cot^(-1){cos(tan^11)}]

Find the value of sec^(-1)(-2)+tan^(-1)(-1/sqrt3)

Find the value of sin[tan^(- 1)(-sqrt(3))+cos^(- 1)((sqrt(3))/- 2)]

The value of expression tan^(- 1)((sqrt(2))/2)+sin^(- 1)((sqrt(5))/5)-cos^(- 1)((sqrt(10))/10)

Find the value of (1-sin^(2)A)(1+tan^(2)A) .

Find the value of: tan^(-1)[2cos(2sin^(-1)(1/2)]

Find the value of sin^(-1)(sqrt3/2)+cos^(-1)(-1)+tan^(-1)(-1)

Find the value of tan^(-1)(-1/(sqrt(3)))+cot^(-1)((1)/(sqrt(3))) + tan^(-1)[sin((-pi)/(2))] .

Find the value of: tan^(-1)[2cos(2sin^(-1)1/2)]

Evaluate the following expression: cos tan^(-1)sin cot^(-1)(1/2)

NCERT EXEMPLAR ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Fillers
  1. Find the value of expression: sin(2tan^(-1)(1/3))+cos(tan^(-1)2sqrt(2)...

    Text Solution

    |

  2. The principal value of cos^(-1)(-1/2) is

    Text Solution

    |

  3. The value of sin^(-1)(sin'(3pi)/(5)) is "….."

    Text Solution

    |

  4. If cos(tan^(-1)x+cot^(-1)sqrt(3))=0 , find the value of xdot

    Text Solution

    |

  5. The set of values of sec^(-1)(1/2) is "……….."

    Text Solution

    |

  6. The principal value of tan^(-1)sqrt(3) is "……."

    Text Solution

    |

  7. The value of cos^(-1)(cos'(14pi)/(3)) is "…….."

    Text Solution

    |

  8. The value of cos(sin^(-1)x + cos^(-1)x), where |x| le 1, is

    Text Solution

    |

  9. The value of tan((sin^(-1)x+cos^(-1)x)/(2)), when x = (sqrt(3))/(2), i...

    Text Solution

    |

  10. If y = 2tan^(-1)x+sin^(-1)((2x)/(1+x^(2))), then "………"lt y lt "………".

    Text Solution

    |

  11. The result tan^(-1)x-tan^(-1)y = tan^(-1)((x-y)/(1+xy)) is true whe...

    Text Solution

    |

  12. The value of cot^(-1)(-x) x in R in terms of cot^(-1)x is "…….."

    Text Solution

    |

  13. All trigonometric functions have inverse over their respective domin...

    Text Solution

    |

  14. The value of the expression (cos^(-1)x)^(2) is equal to sec^(2)x.

    Text Solution

    |

  15. The domain of trigonometric functions can be restricted to any one o...

    Text Solution

    |

  16. The least numerical value, either positive or negative of angle thet...

    Text Solution

    |

  17. The graph of inverse trigonometric function can be obtained from th...

    Text Solution

    |

  18. The minimum value of n for which tan^(-1)'n/pi gt (pi)/(4), n in N, i...

    Text Solution

    |

  19. The principal value of sin^(-1)[cos(sin^(-1)'1/2)] is pi/3.

    Text Solution

    |