Home
Class 12
MATHS
If 2 tan^(-1)(costheta) = tan^(-1)(2 cos...

If `2 tan^(-1)(costheta) = tan^(-1)(2 cosec theta)`, then show that `theta = (pi)/(4)`, when n is an y integer.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( 2 \tan^{-1}(\cos \theta) = \tan^{-1}(2 \csc \theta) \) and show that \( \theta = \frac{\pi}{4} + n\pi \) for any integer \( n \), we can follow these steps: ### Step 1: Use the double angle formula for arctangent We start with the left-hand side of the equation: \[ 2 \tan^{-1}(\cos \theta) = \tan^{-1}\left(\frac{2 \cos \theta}{1 - \cos^2 \theta}\right) \] This uses the identity \( 2 \tan^{-1}(x) = \tan^{-1}\left(\frac{2x}{1-x^2}\right) \). ### Step 2: Rewrite the equation Now we can rewrite the original equation as: \[ \tan^{-1}\left(\frac{2 \cos \theta}{1 - \cos^2 \theta}\right) = \tan^{-1}(2 \csc \theta) \] ### Step 3: Eliminate the arctangent Since the arctangent function is one-to-one, we can equate the arguments: \[ \frac{2 \cos \theta}{1 - \cos^2 \theta} = 2 \csc \theta \] ### Step 4: Substitute \( \csc \theta \) Recall that \( \csc \theta = \frac{1}{\sin \theta} \), so we can rewrite the right-hand side: \[ \frac{2 \cos \theta}{1 - \cos^2 \theta} = \frac{2}{\sin \theta} \] ### Step 5: Cross-multiply Cross-multiplying gives: \[ 2 \cos \theta \sin \theta = 2(1 - \cos^2 \theta) \] ### Step 6: Simplify the equation This simplifies to: \[ \cos \theta \sin \theta = 1 - \cos^2 \theta \] Using the identity \( \sin^2 \theta + \cos^2 \theta = 1 \), we can substitute \( 1 - \cos^2 \theta \) with \( \sin^2 \theta \): \[ \cos \theta \sin \theta = \sin^2 \theta \] ### Step 7: Rearrange the equation Rearranging gives: \[ \cos \theta \sin \theta - \sin^2 \theta = 0 \] Factoring out \( \sin \theta \): \[ \sin \theta (\cos \theta - \sin \theta) = 0 \] ### Step 8: Solve for \( \theta \) This gives us two cases: 1. \( \sin \theta = 0 \) which implies \( \theta = n\pi \) for any integer \( n \). 2. \( \cos \theta - \sin \theta = 0 \) which implies \( \cos \theta = \sin \theta \), leading to \( \theta = \frac{\pi}{4} + n\pi \) for any integer \( n \). ### Conclusion Thus, we have shown that: \[ \theta = \frac{\pi}{4} + n\pi \] for any integer \( n \).

To solve the equation \( 2 \tan^{-1}(\cos \theta) = \tan^{-1}(2 \csc \theta) \) and show that \( \theta = \frac{\pi}{4} + n\pi \) for any integer \( n \), we can follow these steps: ### Step 1: Use the double angle formula for arctangent We start with the left-hand side of the equation: \[ 2 \tan^{-1}(\cos \theta) = \tan^{-1}\left(\frac{2 \cos \theta}{1 - \cos^2 \theta}\right) \] This uses the identity \( 2 \tan^{-1}(x) = \tan^{-1}\left(\frac{2x}{1-x^2}\right) \). ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Qns|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|2 Videos

Similar Questions

Explore conceptually related problems

If 2tan^(-1)(costheta)=tan^(-1)(2cos e ctheta),(theta!=0) , then find the value of theta

theta = tan^(-1) (2 tan^(2) theta) - tan^(-1) ((1)/(3) tan theta) " then " tan theta=

If theta= tan^(-1) (2tan^2 theta) - tan^(-1) (1/3 tan theta) . Then tan theta is a) -2 b) -1 c) 2/3 d) 2

Prove that sec theta + tan theta = tan (pi/4 + theta/2)

Solve cot theta + tan theta=2 cosec theta .

If |2 sin theta-cosec theta| ge 1 and theta ne (n pi)/2, n in Z , then

Prove that : tan^(-1) (e^(itheta)) = (n pi)/2 + pi/4 +i/2 ln" tan(pi/4 + theta /2) ,where n is an integer.

If m tan(alpha-theta)/( cos^2 theta) = n (tan theta)/ (cos^2 (alpha - theta) the prove that 2 theta = alpha - [ tan^(-1) ((n-m)/(n+m)) tan alpha]

If tan^2 theta= 1-e^2 prove that sec theta + tan^3 theta cosec theta = (2-e^2)^(3/2)

(sintheta)/(1+costheta) + (1+costheta)/(sintheta) = 2 cosec theta

NCERT EXEMPLAR ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Fillers
  1. If 2 tan^(-1)(costheta) = tan^(-1)(2 cosec theta), then show that the...

    Text Solution

    |

  2. The principal value of cos^(-1)(-1/2) is

    Text Solution

    |

  3. The value of sin^(-1)(sin'(3pi)/(5)) is "….."

    Text Solution

    |

  4. If cos(tan^(-1)x+cot^(-1)sqrt(3))=0 , find the value of xdot

    Text Solution

    |

  5. The set of values of sec^(-1)(1/2) is "……….."

    Text Solution

    |

  6. The principal value of tan^(-1)sqrt(3) is "……."

    Text Solution

    |

  7. The value of cos^(-1)(cos'(14pi)/(3)) is "…….."

    Text Solution

    |

  8. The value of cos(sin^(-1)x + cos^(-1)x), where |x| le 1, is

    Text Solution

    |

  9. The value of tan((sin^(-1)x+cos^(-1)x)/(2)), when x = (sqrt(3))/(2), i...

    Text Solution

    |

  10. If y = 2tan^(-1)x+sin^(-1)((2x)/(1+x^(2))), then "………"lt y lt "………".

    Text Solution

    |

  11. The result tan^(-1)x-tan^(-1)y = tan^(-1)((x-y)/(1+xy)) is true whe...

    Text Solution

    |

  12. The value of cot^(-1)(-x) x in R in terms of cot^(-1)x is "…….."

    Text Solution

    |

  13. All trigonometric functions have inverse over their respective domin...

    Text Solution

    |

  14. The value of the expression (cos^(-1)x)^(2) is equal to sec^(2)x.

    Text Solution

    |

  15. The domain of trigonometric functions can be restricted to any one o...

    Text Solution

    |

  16. The least numerical value, either positive or negative of angle thet...

    Text Solution

    |

  17. The graph of inverse trigonometric function can be obtained from th...

    Text Solution

    |

  18. The minimum value of n for which tan^(-1)'n/pi gt (pi)/(4), n in N, i...

    Text Solution

    |

  19. The principal value of sin^(-1)[cos(sin^(-1)'1/2)] is pi/3.

    Text Solution

    |