Home
Class 12
MATHS
Show that: cos(2tan^-1(1/7))=sin(4tan^-1...

Show that: `cos(2tan^-1(1/7))=sin(4tan^-1(1/3))`

Text Solution

AI Generated Solution

The correct Answer is:
To show that \( \cos(2\tan^{-1}(1/7)) = \sin(4\tan^{-1}(1/3)) \), we will evaluate both sides step by step. ### Step 1: Evaluate the Left-Hand Side (LHS) We start with the left-hand side: \[ \text{LHS} = \cos(2\tan^{-1}(1/7)) \] Let \( \theta = \tan^{-1}(1/7) \). Then, we have: \[ \tan(\theta) = \frac{1}{7} \] Using the double angle formula for cosine: \[ \cos(2\theta) = \frac{1 - \tan^2(\theta)}{1 + \tan^2(\theta)} \] ### Step 2: Substitute the value of \( \tan(\theta) \) Now, substituting \( \tan(\theta) = \frac{1}{7} \): \[ \tan^2(\theta) = \left(\frac{1}{7}\right)^2 = \frac{1}{49} \] Now substitute this into the cosine formula: \[ \cos(2\theta) = \frac{1 - \frac{1}{49}}{1 + \frac{1}{49}} = \frac{\frac{49 - 1}{49}}{\frac{49 + 1}{49}} = \frac{48/49}{50/49} \] ### Step 3: Simplify the expression Now, simplifying gives: \[ \cos(2\theta) = \frac{48}{50} = \frac{24}{25} \] Thus, we have: \[ \text{LHS} = \frac{24}{25} \] ### Step 4: Evaluate the Right-Hand Side (RHS) Now we evaluate the right-hand side: \[ \text{RHS} = \sin(4\tan^{-1}(1/3)) \] Let \( \phi = \tan^{-1}(1/3) \). Then: \[ \tan(\phi) = \frac{1}{3} \] Using the double angle formula for sine: \[ \sin(4\phi) = \sin(2 \cdot 2\phi) = 2\sin(2\phi)\cos(2\phi) \] ### Step 5: Calculate \( \sin(2\phi) \) and \( \cos(2\phi) \) Using the formulas: \[ \sin(2\phi) = \frac{2\tan(\phi)}{1 + \tan^2(\phi)} \quad \text{and} \quad \cos(2\phi) = \frac{1 - \tan^2(\phi)}{1 + \tan^2(\phi)} \] Calculating \( \tan^2(\phi) \): \[ \tan^2(\phi) = \left(\frac{1}{3}\right)^2 = \frac{1}{9} \] Now substituting into the sine and cosine formulas: \[ \sin(2\phi) = \frac{2 \cdot \frac{1}{3}}{1 + \frac{1}{9}} = \frac{\frac{2}{3}}{\frac{10}{9}} = \frac{2}{3} \cdot \frac{9}{10} = \frac{6}{10} = \frac{3}{5} \] \[ \cos(2\phi) = \frac{1 - \frac{1}{9}}{1 + \frac{1}{9}} = \frac{\frac{8}{9}}{\frac{10}{9}} = \frac{8}{10} = \frac{4}{5} \] ### Step 6: Substitute back into \( \sin(4\phi) \) Now substituting back into the equation for \( \sin(4\phi) \): \[ \sin(4\phi) = 2 \cdot \sin(2\phi) \cdot \cos(2\phi) = 2 \cdot \frac{3}{5} \cdot \frac{4}{5} = \frac{24}{25} \] Thus, we have: \[ \text{RHS} = \frac{24}{25} \] ### Conclusion Since both sides are equal: \[ \text{LHS} = \text{RHS} = \frac{24}{25} \] Therefore, we conclude that: \[ \cos(2\tan^{-1}(1/7)) = \sin(4\tan^{-1}(1/3)) \]

To show that \( \cos(2\tan^{-1}(1/7)) = \sin(4\tan^{-1}(1/3)) \), we will evaluate both sides step by step. ### Step 1: Evaluate the Left-Hand Side (LHS) We start with the left-hand side: \[ \text{LHS} = \cos(2\tan^{-1}(1/7)) ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Qns|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|2 Videos

Similar Questions

Explore conceptually related problems

Show that : cos(2\ tan^(-1)(1/7 ))=sin(4\ tan^(-1) (1/3) )

Show that 2tan^-1 (-3)=-pi/2+tan^-1(-4/3)

Show that 2tan^-1 (-3)=-pi/2+tan^-1(-4/3)

Show that : "tan"^(-1)(1)/(4) +"tan"^(-1)(2)/(9) = (1)/(2) "cos"^(-1)(3)/(5) .

prove that 2tan^-1 (1/3)+tan^-1 (1/7)=pi/4

Show that tan^(-1) (1/2) +tan^(-1) (1/8) = tan^(-1) (3/4) - tan^(-1)(1/18)

Show that: tan(1/2sin^(-1)(3/4))=(4-sqrt(7))/3

sin^(-1)(3/5)+tan^(-1)(1/7)=

Show that tan^(-1)1/2+tan^(-1)2/(11)=tan^(-1)3/4

show that tan^(-1)(1/2)+tan^(-1)(2/11)=tan^(-1)(3/4)

NCERT EXEMPLAR ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Fillers
  1. Show that: cos(2tan^-1(1/7))=sin(4tan^-1(1/3))

    Text Solution

    |

  2. The principal value of cos^(-1)(-1/2) is

    Text Solution

    |

  3. The value of sin^(-1)(sin'(3pi)/(5)) is "….."

    Text Solution

    |

  4. If cos(tan^(-1)x+cot^(-1)sqrt(3))=0 , find the value of xdot

    Text Solution

    |

  5. The set of values of sec^(-1)(1/2) is "……….."

    Text Solution

    |

  6. The principal value of tan^(-1)sqrt(3) is "……."

    Text Solution

    |

  7. The value of cos^(-1)(cos'(14pi)/(3)) is "…….."

    Text Solution

    |

  8. The value of cos(sin^(-1)x + cos^(-1)x), where |x| le 1, is

    Text Solution

    |

  9. The value of tan((sin^(-1)x+cos^(-1)x)/(2)), when x = (sqrt(3))/(2), i...

    Text Solution

    |

  10. If y = 2tan^(-1)x+sin^(-1)((2x)/(1+x^(2))), then "………"lt y lt "………".

    Text Solution

    |

  11. The result tan^(-1)x-tan^(-1)y = tan^(-1)((x-y)/(1+xy)) is true whe...

    Text Solution

    |

  12. The value of cot^(-1)(-x) x in R in terms of cot^(-1)x is "…….."

    Text Solution

    |

  13. All trigonometric functions have inverse over their respective domin...

    Text Solution

    |

  14. The value of the expression (cos^(-1)x)^(2) is equal to sec^(2)x.

    Text Solution

    |

  15. The domain of trigonometric functions can be restricted to any one o...

    Text Solution

    |

  16. The least numerical value, either positive or negative of angle thet...

    Text Solution

    |

  17. The graph of inverse trigonometric function can be obtained from th...

    Text Solution

    |

  18. The minimum value of n for which tan^(-1)'n/pi gt (pi)/(4), n in N, i...

    Text Solution

    |

  19. The principal value of sin^(-1)[cos(sin^(-1)'1/2)] is pi/3.

    Text Solution

    |