Home
Class 12
MATHS
Solve the equation cos(tan^(-1)x) = sin(...

Solve the equation `cos(tan^(-1)x) = sin(cot^(-1)(3/4))`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos(\tan^{-1} x) = \sin(\cot^{-1}(3/4)) \), we will follow these steps: ### Step 1: Solve the Left-Hand Side (LHS) We start with the LHS, which is \( \cos(\tan^{-1} x) \). Let \( \tan^{-1} x = \alpha \). Then, by the definition of the inverse tangent function, we have: \[ \tan \alpha = x \] ### Step 2: Construct a Right Triangle From the definition of tangent, we can construct a right triangle where: - The opposite side (perpendicular) is \( x \) - The adjacent side (base) is \( 1 \) Using the Pythagorean theorem, we can find the hypotenuse: \[ \text{Hypotenuse} = \sqrt{x^2 + 1^2} = \sqrt{x^2 + 1} \] ### Step 3: Find \( \cos \alpha \) Now, we can find \( \cos \alpha \): \[ \cos \alpha = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{1}{\sqrt{x^2 + 1}} \] Thus, the LHS becomes: \[ \cos(\tan^{-1} x) = \frac{1}{\sqrt{x^2 + 1}} \] ### Step 4: Solve the Right-Hand Side (RHS) Now, we evaluate the RHS, which is \( \sin(\cot^{-1}(3/4)) \). Let \( \cot^{-1}(3/4) = \theta \). Then, by the definition of the inverse cotangent function: \[ \cot \theta = \frac{3}{4} \] ### Step 5: Construct a Right Triangle for RHS From the definition of cotangent, we can construct a right triangle where: - The adjacent side (base) is \( 3 \) - The opposite side (perpendicular) is \( 4 \) Using the Pythagorean theorem, we can find the hypotenuse: \[ \text{Hypotenuse} = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \] ### Step 6: Find \( \sin \theta \) Now, we can find \( \sin \theta \): \[ \sin \theta = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{4}{5} \] Thus, the RHS becomes: \[ \sin(\cot^{-1}(3/4)) = \frac{4}{5} \] ### Step 7: Set LHS Equal to RHS Now we equate the two sides: \[ \frac{1}{\sqrt{x^2 + 1}} = \frac{4}{5} \] ### Step 8: Cross-Multiply Cross-multiplying gives: \[ 5 = 4\sqrt{x^2 + 1} \] ### Step 9: Square Both Sides Squaring both sides results in: \[ 25 = 16(x^2 + 1) \] ### Step 10: Simplify the Equation Expanding and simplifying: \[ 25 = 16x^2 + 16 \] \[ 16x^2 = 25 - 16 \] \[ 16x^2 = 9 \] ### Step 11: Solve for \( x \) Dividing both sides by 16: \[ x^2 = \frac{9}{16} \] Taking the square root: \[ x = \pm \frac{3}{4} \] ### Final Answer Thus, the solution to the equation is: \[ x = \frac{3}{4} \quad \text{or} \quad x = -\frac{3}{4} \]

To solve the equation \( \cos(\tan^{-1} x) = \sin(\cot^{-1}(3/4)) \), we will follow these steps: ### Step 1: Solve the Left-Hand Side (LHS) We start with the LHS, which is \( \cos(\tan^{-1} x) \). Let \( \tan^{-1} x = \alpha \). Then, by the definition of the inverse tangent function, we have: \[ \tan \alpha = x ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Qns|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|2 Videos

Similar Questions

Explore conceptually related problems

Solve the following equation for x : "cos"(tan^(-1)x)=sin(cot^(-1)3/4)

Solve the following equation for x : cos(tan^-1 x) = sin(cot^-1(3/4))

Solve the following equation for x : cos(tan^-1 x) = sin(cot^-1(3/4))

Solve the following equation for x : "cos"(tan^(-1)x)=sin(cot^(-1)(3/4)) , tan(cos^(-1)x)=sin(cot^(-1)(1/2))

Solve for x : cos(tan^(-1)x)=sin(cot^(-1)\ 3/4)

Solve the equation tan^(-1) 2x + tan^(-1) 3x = pi//4

Solve the equation sin^(2)x + cos^(2)3x=1

Solve the equation : tan x tan 4x = 1

Solve the equation tan^(-1)2x+tan^(-1)3x=pi/4

Solve the equation : cot x=2 , sin2x=1

NCERT EXEMPLAR ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Fillers
  1. Solve the equation cos(tan^(-1)x) = sin(cot^(-1)(3/4)).

    Text Solution

    |

  2. The principal value of cos^(-1)(-1/2) is

    Text Solution

    |

  3. The value of sin^(-1)(sin'(3pi)/(5)) is "….."

    Text Solution

    |

  4. If cos(tan^(-1)x+cot^(-1)sqrt(3))=0 , find the value of xdot

    Text Solution

    |

  5. The set of values of sec^(-1)(1/2) is "……….."

    Text Solution

    |

  6. The principal value of tan^(-1)sqrt(3) is "……."

    Text Solution

    |

  7. The value of cos^(-1)(cos'(14pi)/(3)) is "…….."

    Text Solution

    |

  8. The value of cos(sin^(-1)x + cos^(-1)x), where |x| le 1, is

    Text Solution

    |

  9. The value of tan((sin^(-1)x+cos^(-1)x)/(2)), when x = (sqrt(3))/(2), i...

    Text Solution

    |

  10. If y = 2tan^(-1)x+sin^(-1)((2x)/(1+x^(2))), then "………"lt y lt "………".

    Text Solution

    |

  11. The result tan^(-1)x-tan^(-1)y = tan^(-1)((x-y)/(1+xy)) is true whe...

    Text Solution

    |

  12. The value of cot^(-1)(-x) x in R in terms of cot^(-1)x is "…….."

    Text Solution

    |

  13. All trigonometric functions have inverse over their respective domin...

    Text Solution

    |

  14. The value of the expression (cos^(-1)x)^(2) is equal to sec^(2)x.

    Text Solution

    |

  15. The domain of trigonometric functions can be restricted to any one o...

    Text Solution

    |

  16. The least numerical value, either positive or negative of angle thet...

    Text Solution

    |

  17. The graph of inverse trigonometric function can be obtained from th...

    Text Solution

    |

  18. The minimum value of n for which tan^(-1)'n/pi gt (pi)/(4), n in N, i...

    Text Solution

    |

  19. The principal value of sin^(-1)[cos(sin^(-1)'1/2)] is pi/3.

    Text Solution

    |