Home
Class 12
MATHS
Prove that tan^(-1)[(sqrt(1+x^2)+sqrt(1...

Prove that `tan^(-1)[(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))]=pi/4+1/2cos^(-1)x^2`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \[ \tan^{-1}\left(\frac{\sqrt{1+x^2}+\sqrt{1-x^2}}{\sqrt{1+x^2}-\sqrt{1-x^2}}\right) = \frac{\pi}{4} + \frac{1}{2} \cos^{-1}(x^2) \] we will follow these steps: ### Step 1: Substitute \( x^2 = \cos(2\theta) \) Let \( x^2 = \cos(2\theta) \). Then, we can express \( \sqrt{1+x^2} \) and \( \sqrt{1-x^2} \) in terms of \( \theta \): \[ \sqrt{1+x^2} = \sqrt{1+\cos(2\theta)} = \sqrt{2\cos^2(\theta)} = \sqrt{2}\cos(\theta) \] \[ \sqrt{1-x^2} = \sqrt{1-\cos(2\theta)} = \sqrt{2\sin^2(\theta)} = \sqrt{2}\sin(\theta) \] ### Step 2: Substitute these into the original expression Now substitute these values into the left-hand side: \[ \tan^{-1}\left(\frac{\sqrt{2}\cos(\theta) + \sqrt{2}\sin(\theta)}{\sqrt{2}\cos(\theta) - \sqrt{2}\sin(\theta)}\right) \] This simplifies to: \[ \tan^{-1}\left(\frac{\cos(\theta) + \sin(\theta)}{\cos(\theta) - \sin(\theta)}\right) \] ### Step 3: Use the tangent addition formula Using the tangent addition formula, we know that: \[ \tan\left(\frac{\pi}{4} + \theta\right) = \frac{1 + \tan(\theta)}{1 - \tan(\theta)} \] In our case, we can express \( \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \). Therefore, \[ \tan\left(\frac{\pi}{4} + \theta\right) = \frac{1 + \frac{\sin(\theta)}{\cos(\theta)}}{1 - \frac{\sin(\theta)}{\cos(\theta)}} = \frac{\cos(\theta) + \sin(\theta)}{\cos(\theta) - \sin(\theta)} \] Thus, \[ \tan^{-1}\left(\frac{\cos(\theta) + \sin(\theta)}{\cos(\theta) - \sin(\theta)}\right) = \frac{\pi}{4} + \theta \] ### Step 4: Substitute back for \( \theta \) Since \( \theta = \frac{1}{2} \cos^{-1}(x^2) \), we can substitute back: \[ \tan^{-1}\left(\frac{\cos(\theta) + \sin(\theta)}{\cos(\theta) - \sin(\theta)}\right) = \frac{\pi}{4} + \frac{1}{2} \cos^{-1}(x^2) \] ### Conclusion Thus, we have shown that: \[ \tan^{-1}\left(\frac{\sqrt{1+x^2}+\sqrt{1-x^2}}{\sqrt{1+x^2}-\sqrt{1-x^2}}\right) = \frac{\pi}{4} + \frac{1}{2} \cos^{-1}(x^2) \] Hence, the proof is complete. ---

To prove that \[ \tan^{-1}\left(\frac{\sqrt{1+x^2}+\sqrt{1-x^2}}{\sqrt{1+x^2}-\sqrt{1-x^2}}\right) = \frac{\pi}{4} + \frac{1}{2} \cos^{-1}(x^2) \] we will follow these steps: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Qns|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|2 Videos

Similar Questions

Explore conceptually related problems

y=tan^(-1)((sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)))

Prove that: tan^(-1){(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))}=pi/4-1/2. cos^(-1)x , 0

Prove that: tan^(-1) {(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))} = pi/4-1/2\ cos^(-1)x

Prove that: tan^(-1)[(sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x))]=pi/4-1/2cos^(-1)x ,\ -1/(sqrt(2))\ lt=x\ lt=1

y= tan^(-1)(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2)) then dy/dx

Prove that tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)+sqrt(1-x)))=pi/4-1/2cos^(-1)x,-1/(sqrt(2))lt=xlt=1

Prove that tan^(-1)((sqrt(1+x)-sqrt(1-x))/(sqrt(1+x)-sqrt(1-x)))=pi/4-1/2cos^(-1),-1/(sqrt(2))lt=xlt=1

Differentiate tan^(-1){(sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))} with respect to cos^(-1)x^2

If y=tan^(-1)((sqrt(1+x^2)-sqrt(1-x^2))/(sqrt(1+x^2)+sqrt(1-x^2))) find (dy)/(dx)

The value of tan^(-1)[(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2))]=theta, |x|<1/2,x!=0 , is equal to:

NCERT EXEMPLAR ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Fillers
  1. Prove that tan^(-1)[(sqrt(1+x^2)+sqrt(1-x^2))/(sqrt(1+x^2)-sqrt(1-x^2...

    Text Solution

    |

  2. The principal value of cos^(-1)(-1/2) is

    Text Solution

    |

  3. The value of sin^(-1)(sin'(3pi)/(5)) is "….."

    Text Solution

    |

  4. If cos(tan^(-1)x+cot^(-1)sqrt(3))=0 , find the value of xdot

    Text Solution

    |

  5. The set of values of sec^(-1)(1/2) is "……….."

    Text Solution

    |

  6. The principal value of tan^(-1)sqrt(3) is "……."

    Text Solution

    |

  7. The value of cos^(-1)(cos'(14pi)/(3)) is "…….."

    Text Solution

    |

  8. The value of cos(sin^(-1)x + cos^(-1)x), where |x| le 1, is

    Text Solution

    |

  9. The value of tan((sin^(-1)x+cos^(-1)x)/(2)), when x = (sqrt(3))/(2), i...

    Text Solution

    |

  10. If y = 2tan^(-1)x+sin^(-1)((2x)/(1+x^(2))), then "………"lt y lt "………".

    Text Solution

    |

  11. The result tan^(-1)x-tan^(-1)y = tan^(-1)((x-y)/(1+xy)) is true whe...

    Text Solution

    |

  12. The value of cot^(-1)(-x) x in R in terms of cot^(-1)x is "…….."

    Text Solution

    |

  13. All trigonometric functions have inverse over their respective domin...

    Text Solution

    |

  14. The value of the expression (cos^(-1)x)^(2) is equal to sec^(2)x.

    Text Solution

    |

  15. The domain of trigonometric functions can be restricted to any one o...

    Text Solution

    |

  16. The least numerical value, either positive or negative of angle thet...

    Text Solution

    |

  17. The graph of inverse trigonometric function can be obtained from th...

    Text Solution

    |

  18. The minimum value of n for which tan^(-1)'n/pi gt (pi)/(4), n in N, i...

    Text Solution

    |

  19. The principal value of sin^(-1)[cos(sin^(-1)'1/2)] is pi/3.

    Text Solution

    |