Home
Class 12
MATHS
Prove that sin^(- 1)(8/17)+sin^(- 1)(3/...

Prove that `sin^(- 1)(8/17)+sin^(- 1)(3/5)=sin^(- 1)(77/85)`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( \sin^{-1}\left(\frac{8}{17}\right) + \sin^{-1}\left(\frac{3}{5}\right) = \sin^{-1}\left(\frac{77}{85}\right) \), we will use the properties of triangles and the tangent addition formula. ### Step 1: Define the angles Let: - \( \theta = \sin^{-1}\left(\frac{8}{17}\right) \) - \( \phi = \sin^{-1}\left(\frac{3}{5}\right) \) ### Step 2: Draw the triangles for \( \theta \) and \( \phi \) For \( \theta \): - The opposite side (perpendicular) = 8 - The hypotenuse = 17 - Using the Pythagorean theorem, the base (adjacent side) can be calculated as: \[ \text{Base} = \sqrt{17^2 - 8^2} = \sqrt{289 - 64} = \sqrt{225} = 15 \] Thus, we have a right triangle with: - Opposite = 8 - Base = 15 - Hypotenuse = 17 For \( \phi \): - The opposite side (perpendicular) = 3 - The hypotenuse = 5 - Using the Pythagorean theorem, the base can be calculated as: \[ \text{Base} = \sqrt{5^2 - 3^2} = \sqrt{25 - 9} = \sqrt{16} = 4 \] Thus, we have a right triangle with: - Opposite = 3 - Base = 4 - Hypotenuse = 5 ### Step 3: Convert to tangent functions Now we can express \( \tan(\theta) \) and \( \tan(\phi) \): \[ \tan(\theta) = \frac{\text{Opposite}}{\text{Base}} = \frac{8}{15} \] \[ \tan(\phi) = \frac{\text{Opposite}}{\text{Base}} = \frac{3}{4} \] ### Step 4: Use the tangent addition formula We will use the formula for \( \tan(A + B) \): \[ \tan(\theta + \phi) = \frac{\tan(\theta) + \tan(\phi)}{1 - \tan(\theta) \tan(\phi)} \] Substituting the values: \[ \tan(\theta + \phi) = \frac{\frac{8}{15} + \frac{3}{4}}{1 - \left(\frac{8}{15} \cdot \frac{3}{4}\right)} \] ### Step 5: Calculate the numerator To add the fractions in the numerator: \[ \frac{8}{15} + \frac{3}{4} = \frac{32}{60} + \frac{45}{60} = \frac{77}{60} \] ### Step 6: Calculate the denominator Now calculate the denominator: \[ 1 - \left(\frac{8}{15} \cdot \frac{3}{4}\right) = 1 - \frac{24}{60} = \frac{36}{60} \] ### Step 7: Combine the results Now substituting back into the tangent formula: \[ \tan(\theta + \phi) = \frac{\frac{77}{60}}{\frac{36}{60}} = \frac{77}{36} \] ### Step 8: Find \( \sin(\theta + \phi) \) Now we need to find \( \sin(\theta + \phi) \): Using the identity \( \sin(x) = \frac{\text{Opposite}}{\text{Hypotenuse}} \): - We have \( \tan(\theta + \phi) = \frac{77}{36} \). - To find the hypotenuse, we can use the Pythagorean theorem: \[ \text{Hypotenuse} = \sqrt{77^2 + 36^2} = \sqrt{5929 + 1296} = \sqrt{7225} = 85 \] ### Step 9: Final calculation Thus, we have: \[ \sin(\theta + \phi) = \frac{77}{85} \] ### Conclusion Therefore, we can conclude: \[ \sin^{-1}\left(\frac{8}{17}\right) + \sin^{-1}\left(\frac{3}{5}\right) = \sin^{-1}\left(\frac{77}{85}\right) \] This completes the proof.

To prove that \( \sin^{-1}\left(\frac{8}{17}\right) + \sin^{-1}\left(\frac{3}{5}\right) = \sin^{-1}\left(\frac{77}{85}\right) \), we will use the properties of triangles and the tangent addition formula. ### Step 1: Define the angles Let: - \( \theta = \sin^{-1}\left(\frac{8}{17}\right) \) - \( \phi = \sin^{-1}\left(\frac{3}{5}\right) \) ### Step 2: Draw the triangles for \( \theta \) and \( \phi \) ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Qns|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|2 Videos

Similar Questions

Explore conceptually related problems

Prove that: sin^(-1)(8/17)+sin^(-1)(3/5)=tan^(-1)(77/36)

Prove that sin^(-1)(8/(17))+sin^(-1)(3/5)=cos^(-1)((36)/(85))

Prove that sin^(-1)(8/(17))+sin^(-1)(3/5)=cos^(-1)((36)/(85))

Prove that: cos^(-1)(12/13)+sin^(-1)(3/5)=sin^(-1)(56/65)

Prove that: cos^(-1)(12/13)+sin^(-1)(3/5)=sin^(-1)(56/65)

Prove each of the following sin^(- 1)(3/5)+sin^(- 1)(8/17)=sin^(- 1)(77/85)

Prove that: sin^(-1)(3/5)=tan^(-1)(3/4)

Show that: sin^(-1)(3/5)-sin^(-1)(8/17)=cos^(-1)(84/85)

Prove that: sin^(-1)(4/5)+sin^(-1)(5/(13))+sin^(-1)((16)/(65))=pi/2

Prove that: sin^(-1)(4/5)+sin^(-1)(5/(13))+sin^(-1)((16)/(65))=pi/2

NCERT EXEMPLAR ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Fillers
  1. Prove that sin^(- 1)(8/17)+sin^(- 1)(3/5)=sin^(- 1)(77/85)

    Text Solution

    |

  2. The principal value of cos^(-1)(-1/2) is

    Text Solution

    |

  3. The value of sin^(-1)(sin'(3pi)/(5)) is "….."

    Text Solution

    |

  4. If cos(tan^(-1)x+cot^(-1)sqrt(3))=0 , find the value of xdot

    Text Solution

    |

  5. The set of values of sec^(-1)(1/2) is "……….."

    Text Solution

    |

  6. The principal value of tan^(-1)sqrt(3) is "……."

    Text Solution

    |

  7. The value of cos^(-1)(cos'(14pi)/(3)) is "…….."

    Text Solution

    |

  8. The value of cos(sin^(-1)x + cos^(-1)x), where |x| le 1, is

    Text Solution

    |

  9. The value of tan((sin^(-1)x+cos^(-1)x)/(2)), when x = (sqrt(3))/(2), i...

    Text Solution

    |

  10. If y = 2tan^(-1)x+sin^(-1)((2x)/(1+x^(2))), then "………"lt y lt "………".

    Text Solution

    |

  11. The result tan^(-1)x-tan^(-1)y = tan^(-1)((x-y)/(1+xy)) is true whe...

    Text Solution

    |

  12. The value of cot^(-1)(-x) x in R in terms of cot^(-1)x is "…….."

    Text Solution

    |

  13. All trigonometric functions have inverse over their respective domin...

    Text Solution

    |

  14. The value of the expression (cos^(-1)x)^(2) is equal to sec^(2)x.

    Text Solution

    |

  15. The domain of trigonometric functions can be restricted to any one o...

    Text Solution

    |

  16. The least numerical value, either positive or negative of angle thet...

    Text Solution

    |

  17. The graph of inverse trigonometric function can be obtained from th...

    Text Solution

    |

  18. The minimum value of n for which tan^(-1)'n/pi gt (pi)/(4), n in N, i...

    Text Solution

    |

  19. The principal value of sin^(-1)[cos(sin^(-1)'1/2)] is pi/3.

    Text Solution

    |