Home
Class 12
MATHS
Show that sin^(-1)(5/13)+cos^(-1)(3/5)=t...

Show that `sin^(-1)(5/13)+cos^(-1)(3/5)=tan^(-1)(63/16)`.

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( \sin^{-1}\left(\frac{5}{13}\right) + \cos^{-1}\left(\frac{3}{5}\right) = \tan^{-1}\left(\frac{63}{16}\right) \), we will follow these steps: ### Step 1: Define the angles Let: \[ \theta = \sin^{-1}\left(\frac{5}{13}\right) \] \[ \phi = \cos^{-1}\left(\frac{3}{5}\right) \] ### Step 2: Find the sides of the triangle for \( \theta \) From \( \theta = \sin^{-1}\left(\frac{5}{13}\right) \): - Opposite side (perpendicular) = 5 - Hypotenuse = 13 Using the Pythagorean theorem, we can find the adjacent side (base): \[ \text{Adjacent} = \sqrt{13^2 - 5^2} = \sqrt{169 - 25} = \sqrt{144} = 12 \] ### Step 3: Find the sides of the triangle for \( \phi \) From \( \phi = \cos^{-1}\left(\frac{3}{5}\right) \): - Adjacent side (base) = 3 - Hypotenuse = 5 Using the Pythagorean theorem, we can find the opposite side (perpendicular): \[ \text{Opposite} = \sqrt{5^2 - 3^2} = \sqrt{25 - 9} = \sqrt{16} = 4 \] ### Step 4: Calculate \( \tan(\theta) \) and \( \tan(\phi) \) Now we can find \( \tan(\theta) \) and \( \tan(\phi) \): \[ \tan(\theta) = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{5}{12} \] \[ \tan(\phi) = \frac{\text{Opposite}}{\text{Adjacent}} = \frac{4}{3} \] ### Step 5: Use the tangent addition formula We will use the formula for the tangent of the sum of two angles: \[ \tan(\theta + \phi) = \frac{\tan(\theta) + \tan(\phi)}{1 - \tan(\theta) \tan(\phi)} \] Substituting the values: \[ \tan(\theta + \phi) = \frac{\frac{5}{12} + \frac{4}{3}}{1 - \left(\frac{5}{12} \cdot \frac{4}{3}\right)} \] ### Step 6: Simplify the numerator To add the fractions in the numerator: \[ \frac{4}{3} = \frac{16}{12} \] Thus, \[ \tan(\theta + \phi) = \frac{\frac{5}{12} + \frac{16}{12}}{1 - \frac{20}{36}} = \frac{\frac{21}{12}}{1 - \frac{5}{9}} \] ### Step 7: Simplify the denominator Calculating the denominator: \[ 1 - \frac{5}{9} = \frac{4}{9} \] So, \[ \tan(\theta + \phi) = \frac{\frac{21}{12}}{\frac{4}{9}} = \frac{21 \cdot 9}{12 \cdot 4} = \frac{189}{48} \] ### Step 8: Simplify the fraction Now simplifying \( \frac{189}{48} \): \[ \frac{189}{48} = \frac{63}{16} \] ### Step 9: Final result Thus, we have: \[ \tan(\theta + \phi) = \frac{63}{16} \] This implies: \[ \theta + \phi = \tan^{-1}\left(\frac{63}{16}\right) \] Therefore, we conclude that: \[ \sin^{-1}\left(\frac{5}{13}\right) + \cos^{-1}\left(\frac{3}{5}\right) = \tan^{-1}\left(\frac{63}{16}\right) \]

To prove that \( \sin^{-1}\left(\frac{5}{13}\right) + \cos^{-1}\left(\frac{3}{5}\right) = \tan^{-1}\left(\frac{63}{16}\right) \), we will follow these steps: ### Step 1: Define the angles Let: \[ \theta = \sin^{-1}\left(\frac{5}{13}\right) \] \[ ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Qns|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|2 Videos

Similar Questions

Explore conceptually related problems

Show that sin^(-1)(12)/(13)+cos^(-1)4/5+tan^(-1)(63)/(16)=pi .

Prove that : sin^(-1)(5/13) +cos ^(−1)(3/5)=tan (−1)(63/16) ​

Prove that: sin^(-1) (12/13)+cos^(-1) (4/5)+tan^(-1) (63/16)=pi

Prove that: sin^(-1)(12)/(13)+cos^(-1)4/5+tan^(-1)(63)/(16)=pi

sin^(-1)(3/5)+tan^(-1)(1/7)=

Prove that: sin^(-1)((12)/(13))+cos^(-1)(4/5)+tan^(-1)((63)/(16))=pi

Prove that: cos^(-1)(12/13)+sin^(-1)(3/5)=sin^(-1)(56/65)

Prove that: cos^(-1)(12/13)+sin^(-1)(3/5)=sin^(-1)(56/65)

Show that: sin^(-1)(3/5)-sin^(-1)(8/17)=cos^(-1)(84/85)

Column I, Column II sin^(-1)4/5+2tan^(-1)1/3= , p. pi/6 sin^(-1)(12)/(13)+cos^(-1)4/5+tan^(-1)(63)/(16)= , q. pi/2 If A=tan^(-1)(xsqrt(3))/(2lambda-x)a n dB=tan^(-1)((2x-lambda)/(lambdasqrt(3))) then the value of a-Bi s , r. pi/4 tan^(-1)1/7+2tan^(-1)1/3= , s. pi

NCERT EXEMPLAR ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Fillers
  1. Show that sin^(-1)(5/13)+cos^(-1)(3/5)=tan^(-1)(63/16).

    Text Solution

    |

  2. The principal value of cos^(-1)(-1/2) is

    Text Solution

    |

  3. The value of sin^(-1)(sin'(3pi)/(5)) is "….."

    Text Solution

    |

  4. If cos(tan^(-1)x+cot^(-1)sqrt(3))=0 , find the value of xdot

    Text Solution

    |

  5. The set of values of sec^(-1)(1/2) is "……….."

    Text Solution

    |

  6. The principal value of tan^(-1)sqrt(3) is "……."

    Text Solution

    |

  7. The value of cos^(-1)(cos'(14pi)/(3)) is "…….."

    Text Solution

    |

  8. The value of cos(sin^(-1)x + cos^(-1)x), where |x| le 1, is

    Text Solution

    |

  9. The value of tan((sin^(-1)x+cos^(-1)x)/(2)), when x = (sqrt(3))/(2), i...

    Text Solution

    |

  10. If y = 2tan^(-1)x+sin^(-1)((2x)/(1+x^(2))), then "………"lt y lt "………".

    Text Solution

    |

  11. The result tan^(-1)x-tan^(-1)y = tan^(-1)((x-y)/(1+xy)) is true whe...

    Text Solution

    |

  12. The value of cot^(-1)(-x) x in R in terms of cot^(-1)x is "…….."

    Text Solution

    |

  13. All trigonometric functions have inverse over their respective domin...

    Text Solution

    |

  14. The value of the expression (cos^(-1)x)^(2) is equal to sec^(2)x.

    Text Solution

    |

  15. The domain of trigonometric functions can be restricted to any one o...

    Text Solution

    |

  16. The least numerical value, either positive or negative of angle thet...

    Text Solution

    |

  17. The graph of inverse trigonometric function can be obtained from th...

    Text Solution

    |

  18. The minimum value of n for which tan^(-1)'n/pi gt (pi)/(4), n in N, i...

    Text Solution

    |

  19. The principal value of sin^(-1)[cos(sin^(-1)'1/2)] is pi/3.

    Text Solution

    |