Home
Class 12
MATHS
Prove: tan^(-1)(1/4)+tan^(-1)(2/9)=sin^(...

Prove: `tan^(-1)(1/4)+tan^(-1)(2/9)=sin^(-1)(1/sqrt(5))`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that \( \tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{2}{9}\right) = \sin^{-1}\left(\frac{1}{\sqrt{5}}\right) \), we will follow these steps: ### Step 1: Use the formula for the sum of inverse tangents We start with the left-hand side: \[ \tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{2}{9}\right) \] We can use the formula: \[ \tan^{-1}(x) + \tan^{-1}(y) = \tan^{-1}\left(\frac{x + y}{1 - xy}\right) \] where \( x = \frac{1}{4} \) and \( y = \frac{2}{9} \). ### Step 2: Calculate \( x + y \) and \( 1 - xy \) First, we calculate \( x + y \): \[ x + y = \frac{1}{4} + \frac{2}{9} \] To add these fractions, we find a common denominator, which is 36: \[ \frac{1}{4} = \frac{9}{36}, \quad \frac{2}{9} = \frac{8}{36} \] Thus, \[ x + y = \frac{9}{36} + \frac{8}{36} = \frac{17}{36} \] Next, we calculate \( 1 - xy \): \[ xy = \frac{1}{4} \cdot \frac{2}{9} = \frac{2}{36} = \frac{1}{18} \] So, \[ 1 - xy = 1 - \frac{1}{18} = \frac{18 - 1}{18} = \frac{17}{18} \] ### Step 3: Substitute into the formula Now we substitute \( x + y \) and \( 1 - xy \) into the formula: \[ \tan^{-1}\left(\frac{\frac{17}{36}}{\frac{17}{18}}\right) = \tan^{-1}\left(\frac{17}{36} \cdot \frac{18}{17}\right) = \tan^{-1}\left(\frac{18}{36}\right) = \tan^{-1}\left(\frac{1}{2}\right) \] ### Step 4: Relate to sine inverse Now we have: \[ \tan^{-1}\left(\frac{1}{2}\right) \] To convert this to sine inverse, we can consider a right triangle where the opposite side is 1 and the adjacent side is 2. The hypotenuse \( h \) is given by: \[ h = \sqrt{1^2 + 2^2} = \sqrt{1 + 4} = \sqrt{5} \] Thus, we can express the sine of the angle \( \theta \) as: \[ \sin(\theta) = \frac{\text{opposite}}{\text{hypotenuse}} = \frac{1}{\sqrt{5}} \] Therefore, \[ \tan^{-1}\left(\frac{1}{2}\right) = \sin^{-1}\left(\frac{1}{\sqrt{5}}\right) \] ### Conclusion We have shown that: \[ \tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{2}{9}\right) = \sin^{-1}\left(\frac{1}{\sqrt{5}}\right) \] Thus, the left-hand side equals the right-hand side, proving the statement.

To prove that \( \tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{2}{9}\right) = \sin^{-1}\left(\frac{1}{\sqrt{5}}\right) \), we will follow these steps: ### Step 1: Use the formula for the sum of inverse tangents We start with the left-hand side: \[ \tan^{-1}\left(\frac{1}{4}\right) + \tan^{-1}\left(\frac{2}{9}\right) \] We can use the formula: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Qns|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|2 Videos

Similar Questions

Explore conceptually related problems

Prove that 2tan^(-1)(1/2)+tan^(-1)(1/7)=sin^(-1)((31)/(25sqrt(2)))

tan^(- 1)(1/4)+tan^(- 1)(2/9)=1/2tan^(- 1)(4/3)

tan^(- 1)(1/4)+tan^(- 1)(2/9)=1/2tan^(- 1)(4/3)

Prove that tan^(-1) (1/4) + tan^(-1) (2/9) = 1/2 sin^(-1) (4/5)

Prove the following: tan^(-1)(1/4)+tan^(-1)(2/9)=1/2cos^(-1)(3/5)

Prove that tan^-1(1/4)+ tan^-1(2/9) = 1/2sin^-1(4/5)

Prove that: sin^(-1)(3/5)=tan^(-1)(3/4)

Prove that : tan^(-1).(1)/(4)+tan^(-1).(2)/(9)=(1)/(2)sin^(-1).(4)/(5)

Prove the following: tan^(-1)(1/4)+tan^(-1)(2/9)=1/2cos^(-1)(3/5)=1/2sin^(-1)(4/5)

Prove that : tan^(-1)(1/2)+tan^(-1)(1/5)+tan^(-1)(1/8)=pi/4dot

NCERT EXEMPLAR ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Fillers
  1. Prove: tan^(-1)(1/4)+tan^(-1)(2/9)=sin^(-1)(1/sqrt(5))

    Text Solution

    |

  2. The principal value of cos^(-1)(-1/2) is

    Text Solution

    |

  3. The value of sin^(-1)(sin'(3pi)/(5)) is "….."

    Text Solution

    |

  4. If cos(tan^(-1)x+cot^(-1)sqrt(3))=0 , find the value of xdot

    Text Solution

    |

  5. The set of values of sec^(-1)(1/2) is "……….."

    Text Solution

    |

  6. The principal value of tan^(-1)sqrt(3) is "……."

    Text Solution

    |

  7. The value of cos^(-1)(cos'(14pi)/(3)) is "…….."

    Text Solution

    |

  8. The value of cos(sin^(-1)x + cos^(-1)x), where |x| le 1, is

    Text Solution

    |

  9. The value of tan((sin^(-1)x+cos^(-1)x)/(2)), when x = (sqrt(3))/(2), i...

    Text Solution

    |

  10. If y = 2tan^(-1)x+sin^(-1)((2x)/(1+x^(2))), then "………"lt y lt "………".

    Text Solution

    |

  11. The result tan^(-1)x-tan^(-1)y = tan^(-1)((x-y)/(1+xy)) is true whe...

    Text Solution

    |

  12. The value of cot^(-1)(-x) x in R in terms of cot^(-1)x is "…….."

    Text Solution

    |

  13. All trigonometric functions have inverse over their respective domin...

    Text Solution

    |

  14. The value of the expression (cos^(-1)x)^(2) is equal to sec^(2)x.

    Text Solution

    |

  15. The domain of trigonometric functions can be restricted to any one o...

    Text Solution

    |

  16. The least numerical value, either positive or negative of angle thet...

    Text Solution

    |

  17. The graph of inverse trigonometric function can be obtained from th...

    Text Solution

    |

  18. The minimum value of n for which tan^(-1)'n/pi gt (pi)/(4), n in N, i...

    Text Solution

    |

  19. The principal value of sin^(-1)[cos(sin^(-1)'1/2)] is pi/3.

    Text Solution

    |