Home
Class 12
MATHS
Find the value of 4 tan^-1 (1/5) - tan^-...

Find the value of `4 tan^-1 (1/5) - tan^-1 (1/239) `

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem \( 4 \tan^{-1} \left( \frac{1}{5} \right) - \tan^{-1} \left( \frac{1}{239} \right) \), we will use the properties and formulas of inverse tangent functions. ### Step-by-Step Solution: 1. **Use the Double Angle Formula for Inverse Tangent**: The formula for \( 2 \tan^{-1}(x) \) is: \[ 2 \tan^{-1}(x) = \tan^{-1} \left( \frac{2x}{1 - x^2} \right) \] Therefore, we can express \( 4 \tan^{-1} \left( \frac{1}{5} \right) \) as: \[ 4 \tan^{-1} \left( \frac{1}{5} \right) = 2 \cdot 2 \tan^{-1} \left( \frac{1}{5} \right) = 2 \tan^{-1} \left( \frac{2 \cdot \frac{1}{5}}{1 - \left( \frac{1}{5} \right)^2} \right) \] 2. **Calculate \( 2 \tan^{-1} \left( \frac{1}{5} \right) \)**: First, calculate \( 2 \cdot \frac{1}{5} = \frac{2}{5} \) and \( 1 - \left( \frac{1}{5} \right)^2 = 1 - \frac{1}{25} = \frac{24}{25} \). Thus, \[ 2 \tan^{-1} \left( \frac{1}{5} \right) = \tan^{-1} \left( \frac{\frac{2}{5}}{\frac{24}{25}} \right) = \tan^{-1} \left( \frac{2 \cdot 25}{5 \cdot 24} \right) = \tan^{-1} \left( \frac{10}{24} \right) = \tan^{-1} \left( \frac{5}{12} \right) \] 3. **Now apply the formula again**: We have: \[ 4 \tan^{-1} \left( \frac{1}{5} \right) = 2 \tan^{-1} \left( \frac{5}{12} \right) \] Using the double angle formula again: \[ 2 \tan^{-1} \left( \frac{5}{12} \right) = \tan^{-1} \left( \frac{2 \cdot \frac{5}{12}}{1 - \left( \frac{5}{12} \right)^2} \right) \] 4. **Calculate \( 2 \cdot \frac{5}{12} \) and \( 1 - \left( \frac{5}{12} \right)^2 \)**: Here, \( 2 \cdot \frac{5}{12} = \frac{10}{12} = \frac{5}{6} \) and \( 1 - \left( \frac{5}{12} \right)^2 = 1 - \frac{25}{144} = \frac{119}{144} \). Thus, \[ 2 \tan^{-1} \left( \frac{5}{12} \right) = \tan^{-1} \left( \frac{\frac{5}{6}}{\frac{119}{144}} \right) = \tan^{-1} \left( \frac{5 \cdot 144}{6 \cdot 119} \right) = \tan^{-1} \left( \frac{120}{119} \right) \] 5. **Now we can substitute back into the original expression**: We have: \[ 4 \tan^{-1} \left( \frac{1}{5} \right) - \tan^{-1} \left( \frac{1}{239} \right) = \tan^{-1} \left( \frac{120}{119} \right) - \tan^{-1} \left( \frac{1}{239} \right) \] 6. **Use the formula for the difference of two inverse tangents**: The formula is: \[ \tan^{-1}(a) - \tan^{-1}(b) = \tan^{-1} \left( \frac{a - b}{1 + ab} \right) \] Here, \( a = \frac{120}{119} \) and \( b = \frac{1}{239} \). So, \[ \tan^{-1} \left( \frac{\frac{120}{119} - \frac{1}{239}}{1 + \frac{120}{119} \cdot \frac{1}{239}} \right) \] 7. **Calculate the numerator and denominator**: The numerator: \[ \frac{120}{119} - \frac{1}{239} = \frac{120 \cdot 239 - 1 \cdot 119}{119 \cdot 239} = \frac{28740 - 119}{28441} = \frac{28721}{28441} \] The denominator: \[ 1 + \frac{120}{119} \cdot \frac{1}{239} = 1 + \frac{120}{28441} = \frac{28441 + 120}{28441} = \frac{28561}{28441} \] 8. **Combine the results**: Thus, we have: \[ \tan^{-1} \left( \frac{28721}{28561} \right) \] 9. **Recognize that \( \tan^{-1}(1) = \frac{\pi}{4} \)**: Since \( \frac{28721}{28561} = 1 \), we conclude: \[ \tan^{-1}(1) = \frac{\pi}{4} \] ### Final Result: Thus, the value of \( 4 \tan^{-1} \left( \frac{1}{5} \right) - \tan^{-1} \left( \frac{1}{239} \right) \) is: \[ \frac{\pi}{4} \]

To solve the problem \( 4 \tan^{-1} \left( \frac{1}{5} \right) - \tan^{-1} \left( \frac{1}{239} \right) \), we will use the properties and formulas of inverse tangent functions. ### Step-by-Step Solution: 1. **Use the Double Angle Formula for Inverse Tangent**: The formula for \( 2 \tan^{-1}(x) \) is: \[ 2 \tan^{-1}(x) = \tan^{-1} \left( \frac{2x}{1 - x^2} \right) ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Qns|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|2 Videos

Similar Questions

Explore conceptually related problems

Find the value of 4 tan^(-1).(1)/(5) - tan^(-1).(1)/(70) + tan^(-1).(1)/(99)

4 tan^(-1)(1/5)-tan^(-1)(1/239) is equal to

Find the value of sin^(-1) ((3)/(5)) + tan^(-1) ((1)/(7))

find the value of tan^(-1){cot(-1/4)}

Prove: 4 tan^(-1) (1/5 )- tan^(-1)( 1/239) = pi/4

Find the value of 4tan^(-1)1/5-tan^(-1)1/(70)+tan^(-1)1/(99)

Find value of tan^-1 (3/4)+tan^-1 (3/5)-tan^-1 (8/19)

Find the value of theta : tan^(-1)""(16)/5 = tan^(-1) 4theta

Write the value of tan(2tan^-1(1/5)) .

Find the value of : tan^(-1)(- 1/sqrt(3))

NCERT EXEMPLAR ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Fillers
  1. Find the value of 4 tan^-1 (1/5) - tan^-1 (1/239)

    Text Solution

    |

  2. The principal value of cos^(-1)(-1/2) is

    Text Solution

    |

  3. The value of sin^(-1)(sin'(3pi)/(5)) is "….."

    Text Solution

    |

  4. If cos(tan^(-1)x+cot^(-1)sqrt(3))=0 , find the value of xdot

    Text Solution

    |

  5. The set of values of sec^(-1)(1/2) is "……….."

    Text Solution

    |

  6. The principal value of tan^(-1)sqrt(3) is "……."

    Text Solution

    |

  7. The value of cos^(-1)(cos'(14pi)/(3)) is "…….."

    Text Solution

    |

  8. The value of cos(sin^(-1)x + cos^(-1)x), where |x| le 1, is

    Text Solution

    |

  9. The value of tan((sin^(-1)x+cos^(-1)x)/(2)), when x = (sqrt(3))/(2), i...

    Text Solution

    |

  10. If y = 2tan^(-1)x+sin^(-1)((2x)/(1+x^(2))), then "………"lt y lt "………".

    Text Solution

    |

  11. The result tan^(-1)x-tan^(-1)y = tan^(-1)((x-y)/(1+xy)) is true whe...

    Text Solution

    |

  12. The value of cot^(-1)(-x) x in R in terms of cot^(-1)x is "…….."

    Text Solution

    |

  13. All trigonometric functions have inverse over their respective domin...

    Text Solution

    |

  14. The value of the expression (cos^(-1)x)^(2) is equal to sec^(2)x.

    Text Solution

    |

  15. The domain of trigonometric functions can be restricted to any one o...

    Text Solution

    |

  16. The least numerical value, either positive or negative of angle thet...

    Text Solution

    |

  17. The graph of inverse trigonometric function can be obtained from th...

    Text Solution

    |

  18. The minimum value of n for which tan^(-1)'n/pi gt (pi)/(4), n in N, i...

    Text Solution

    |

  19. The principal value of sin^(-1)[cos(sin^(-1)'1/2)] is pi/3.

    Text Solution

    |