Home
Class 12
MATHS
Show that: tan(1/2sin^(-1)(3/4))=(4\- sq...

Show that: `tan(1/2sin^(-1)(3/4))=(4\- sqrt(7))/3`

Text Solution

AI Generated Solution

The correct Answer is:
To show that \( \tan\left(\frac{1}{2} \sin^{-1}\left(\frac{3}{4}\right)\right) = \frac{4 - \sqrt{7}}{3} \), we will follow these steps: ### Step 1: Set up the problem Let \( \theta = \sin^{-1}\left(\frac{3}{4}\right) \). This implies that \( \sin(\theta) = \frac{3}{4} \). ### Step 2: Find \( \cos(\theta) \) Using the Pythagorean identity: \[ \sin^2(\theta) + \cos^2(\theta) = 1 \] We can find \( \cos(\theta) \): \[ \cos^2(\theta) = 1 - \sin^2(\theta) = 1 - \left(\frac{3}{4}\right)^2 = 1 - \frac{9}{16} = \frac{16 - 9}{16} = \frac{7}{16} \] Thus, \[ \cos(\theta) = \sqrt{\frac{7}{16}} = \frac{\sqrt{7}}{4} \] ### Step 3: Use the half-angle formula for tangent We will use the half-angle formula for tangent: \[ \tan\left(\frac{\theta}{2}\right) = \frac{\sin(\theta)}{1 + \cos(\theta)} \] Substituting the values we found: \[ \tan\left(\frac{\theta}{2}\right) = \frac{\sin(\theta)}{1 + \cos(\theta)} = \frac{\frac{3}{4}}{1 + \frac{\sqrt{7}}{4}} \] ### Step 4: Simplify the expression Now, simplify the denominator: \[ 1 + \frac{\sqrt{7}}{4} = \frac{4 + \sqrt{7}}{4} \] Thus, we have: \[ \tan\left(\frac{\theta}{2}\right) = \frac{\frac{3}{4}}{\frac{4 + \sqrt{7}}{4}} = \frac{3}{4 + \sqrt{7}} \] ### Step 5: Rationalize the denominator To rationalize the denominator, multiply the numerator and denominator by the conjugate of the denominator: \[ \tan\left(\frac{\theta}{2}\right) = \frac{3(4 - \sqrt{7})}{(4 + \sqrt{7})(4 - \sqrt{7})} \] Calculating the denominator: \[ (4 + \sqrt{7})(4 - \sqrt{7}) = 4^2 - (\sqrt{7})^2 = 16 - 7 = 9 \] Thus, we have: \[ \tan\left(\frac{\theta}{2}\right) = \frac{3(4 - \sqrt{7})}{9} = \frac{4 - \sqrt{7}}{3} \] ### Conclusion We have shown that: \[ \tan\left(\frac{1}{2} \sin^{-1}\left(\frac{3}{4}\right)\right) = \frac{4 - \sqrt{7}}{3} \]

To show that \( \tan\left(\frac{1}{2} \sin^{-1}\left(\frac{3}{4}\right)\right) = \frac{4 - \sqrt{7}}{3} \), we will follow these steps: ### Step 1: Set up the problem Let \( \theta = \sin^{-1}\left(\frac{3}{4}\right) \). This implies that \( \sin(\theta) = \frac{3}{4} \). ### Step 2: Find \( \cos(\theta) \) Using the Pythagorean identity: \[ ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Qns|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|2 Videos

Similar Questions

Explore conceptually related problems

Evaluate: sin(tan^(-1)(3/4))

Show that : cos(2\ tan^(-1)(1/7 ))=sin(4\ tan^(-1) (1/3) )

Show that: cos(2tan^(-1)(1/7))=sin(4tan^(-1)(1/3))

Show that tan^(-1)1/2+tan^(-1)2/(11)=tan^(-1)3/4

show that tan^(-1)(1/2)+tan^(-1)(2/11)=tan^(-1)(3/4)

Show that tan^(-1) (1/2) +tan^(-1) (1/8) = tan^(-1) (3/4) - tan^(-1)(1/18)

Show that: cos(2tan^-1(1/7))=sin(4tan^-1(1/3))

Prove that: sin^(-1)(3/5)=tan^(-1)(3/4)

Show that "sin"^(-1)(sqrt(3))/2+"tan"^(-1)1/(sqrt(3))=(2pi)/3

Show that : "tan"^(-1)(1)/(4) +"tan"^(-1)(2)/(9) = (1)/(2) "cos"^(-1)(3)/(5) .

NCERT EXEMPLAR ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Fillers
  1. Show that: tan(1/2sin^(-1)(3/4))=(4\- sqrt(7))/3

    Text Solution

    |

  2. The principal value of cos^(-1)(-1/2) is

    Text Solution

    |

  3. The value of sin^(-1)(sin'(3pi)/(5)) is "….."

    Text Solution

    |

  4. If cos(tan^(-1)x+cot^(-1)sqrt(3))=0 , find the value of xdot

    Text Solution

    |

  5. The set of values of sec^(-1)(1/2) is "……….."

    Text Solution

    |

  6. The principal value of tan^(-1)sqrt(3) is "……."

    Text Solution

    |

  7. The value of cos^(-1)(cos'(14pi)/(3)) is "…….."

    Text Solution

    |

  8. The value of cos(sin^(-1)x + cos^(-1)x), where |x| le 1, is

    Text Solution

    |

  9. The value of tan((sin^(-1)x+cos^(-1)x)/(2)), when x = (sqrt(3))/(2), i...

    Text Solution

    |

  10. If y = 2tan^(-1)x+sin^(-1)((2x)/(1+x^(2))), then "………"lt y lt "………".

    Text Solution

    |

  11. The result tan^(-1)x-tan^(-1)y = tan^(-1)((x-y)/(1+xy)) is true whe...

    Text Solution

    |

  12. The value of cot^(-1)(-x) x in R in terms of cot^(-1)x is "…….."

    Text Solution

    |

  13. All trigonometric functions have inverse over their respective domin...

    Text Solution

    |

  14. The value of the expression (cos^(-1)x)^(2) is equal to sec^(2)x.

    Text Solution

    |

  15. The domain of trigonometric functions can be restricted to any one o...

    Text Solution

    |

  16. The least numerical value, either positive or negative of angle thet...

    Text Solution

    |

  17. The graph of inverse trigonometric function can be obtained from th...

    Text Solution

    |

  18. The minimum value of n for which tan^(-1)'n/pi gt (pi)/(4), n in N, i...

    Text Solution

    |

  19. The principal value of sin^(-1)[cos(sin^(-1)'1/2)] is pi/3.

    Text Solution

    |