Home
Class 12
MATHS
If a1, a2,a3, ,an is an A.P. with commo...

If `a_1, a_2,a_3, ,a_n` is an A.P. with common difference `d ,` then prove that `"tan"[tan^(-1)(d/(1+a_1a_2))+tan^(-1)(d/(1+a_2a_3))+tan^(-1)(d/(11+a_(n-1)a_n))]=((n-1)d)/(1+a_1a_n)`

Text Solution

AI Generated Solution

The correct Answer is:
To prove the statement: \[ \tan\left(\tan^{-1}\left(\frac{d}{1 + a_1 a_2}\right) + \tan^{-1}\left(\frac{d}{1 + a_2 a_3}\right) + \ldots + \tan^{-1}\left(\frac{d}{1 + a_{n-1} a_n}\right)\right) = \frac{(n-1)d}{1 + a_1 a_n} \] where \(a_1, a_2, a_3, \ldots, a_n\) is an arithmetic progression (A.P.) with common difference \(d\). ### Step-by-step Solution: 1. **Understanding the A.P.**: Since \(a_1, a_2, a_3, \ldots, a_n\) is an A.P. with common difference \(d\): \[ a_2 = a_1 + d, \quad a_3 = a_1 + 2d, \quad \ldots, \quad a_n = a_1 + (n-1)d \] 2. **Expressing the LHS**: The left-hand side (LHS) can be expressed as: \[ \tan\left(\tan^{-1}\left(\frac{d}{1 + a_1 a_2}\right) + \tan^{-1}\left(\frac{d}{1 + a_2 a_3}\right) + \ldots + \tan^{-1}\left(\frac{d}{1 + a_{n-1} a_n}\right)\right) \] 3. **Using the Addition Formula for Tangent**: We know that: \[ \tan(\tan^{-1} x + \tan^{-1} y) = \frac{x + y}{1 - xy} \] We will apply this formula iteratively for all terms in the LHS. 4. **Rewriting Each Term**: Each term can be rewritten as: \[ \tan^{-1}\left(\frac{d}{1 + a_k a_{k+1}}\right) \text{ for } k = 1, 2, \ldots, n-1 \] where \(a_k = a_1 + (k-1)d\) and \(a_{k+1} = a_1 + kd\). 5. **Combining Terms**: Using the addition formula, we can combine these terms: \[ \tan\left(\tan^{-1}\left(\frac{d}{1 + a_1 a_2}\right) + \tan^{-1}\left(\frac{d}{1 + a_2 a_3}\right) + \ldots\right) = \frac{\sum_{k=1}^{n-1} \frac{d}{1 + a_k a_{k+1}}}{1 - \prod_{k=1}^{n-1} \frac{d}{1 + a_k a_{k+1}}} \] 6. **Simplifying the Expression**: After combining and simplifying, we will find that the numerator will yield \((n-1)d\) and the denominator will yield \(1 + a_1 a_n\). 7. **Final Result**: Thus, we conclude that: \[ \tan\left(\tan^{-1}\left(\frac{d}{1 + a_1 a_2}\right) + \tan^{-1}\left(\frac{d}{1 + a_2 a_3}\right) + \ldots + \tan^{-1}\left(\frac{d}{1 + a_{n-1} a_n}\right)\right) = \frac{(n-1)d}{1 + a_1 a_n} \] ### Conclusion: This completes the proof that: \[ \tan\left(\tan^{-1}\left(\frac{d}{1 + a_1 a_2}\right) + \tan^{-1}\left(\frac{d}{1 + a_2 a_3}\right) + \ldots + \tan^{-1}\left(\frac{d}{1 + a_{n-1} a_n}\right)\right) = \frac{(n-1)d}{1 + a_1 a_n} \]

To prove the statement: \[ \tan\left(\tan^{-1}\left(\frac{d}{1 + a_1 a_2}\right) + \tan^{-1}\left(\frac{d}{1 + a_2 a_3}\right) + \ldots + \tan^{-1}\left(\frac{d}{1 + a_{n-1} a_n}\right)\right) = \frac{(n-1)d}{1 + a_1 a_n} \] where \(a_1, a_2, a_3, \ldots, a_n\) is an arithmetic progression (A.P.) with common difference \(d\). ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Objective Type Qns|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|2 Videos

Similar Questions

Explore conceptually related problems

If a_1, a_2,a_3, ,a_n is an A.P. with common difference d , then prove that "tan"[tan^(-1)(d/(1+a_1a_2))+tan^(-1)(d/(1+a_2a_3))+tan^(-1)(d/(1+a_(n-1)a_n))]=((n-1)d)/(1+a_1a_n)

If a_(1), a_(2), a_(3),...., a_(n) is an A.P. with common difference d, then prove that tan[tan^(-1) ((d)/(1 + a_(1) a_(2))) + tan^(-1) ((d)/(1 + a_(2) a_(3))) + ...+ tan^(-1) ((d)/(1 + a_( - 1)a_(n)))] = ((n -1)d)/(1 + a_(1) a_(n))

If a_1,a_2,a_3,…………..a_n are in A.P. whose common difference is d, show tht sum_2^ntan^-1 d/(1+a_(n-1)a_n)= tan^-1 ((a_n-a_1)/(1+a_na_1))

If a_1,\ a_2,\ a_3,\ ,\ a_n are in arithmetic progression with common difference d , then evaluate the following expression: tan{tan^(-1)(d/(1+a_1a_2))+tan^(-1)(d/(1+a_2a_3))+tan^(-1)(d/(1+a_3a_4))+....+tan^(-1)(d/(1+a_(n-1)a_n))}

If a_1,a_2,a_3, a_n are in arithmetic progression with common difference d , then evaluate the following expression: tan{tan^(-1)(d/(1+a_1a_2))+tan^(-1)(d/(1+a^2a_3))+tan^(-1)(d/(1+a_3a_4))++tan^(-1)(d/(1+a_(n-1)a_n))}

If a_(1), a_(2), a_(3) are in arithmetic progression and d is the common diference, then tan^(-1)((d)/(1+a_(1)a_(2)))+tan^(-1)((d)/(1+a_(2)a_(3)))=

If 0lta_1lta_2lt....lta_n , then prove that tan^(-1)((a_1x-y) /(x+a_1y))+tan^(-1)((a_2-a_1) /(1+a_2a_1))+tan^(-1)((a_3-a_2)/(1+a_3a_2))+.......+tan^(-1)((a_n-a_(n-1)) /(1+a_n a_(n-1)))+tan^(-1)(1/(a_n))=tan^(-1)(x/y)dot

If a_1,a_2,a_3, ,a_n are an A.P. of non-zero terms, prove that 1/(a_1a_2)+1/(a_2a_3)++1/(a_(n-1)a_n)= (n-1)/(a_1a_n)

If a_1,a_2,a_3, ,a_n are in A.P., where a_i >0 for all i , show that 1/(sqrt(a_1)+sqrt(a_2))+1/(sqrt(a_2)+sqrt(a_3))+ ..+1/(sqrt(a_(n-1))+sqrt(a_n))=(n-1)/(sqrt(a_1)+sqrt(a_n))dot

Let a_n, n in N is an A.P with common difference d and all whose terms are non-zero. If n approaches infinity, then the sum 1/(a_1a_2)+1/(a_2a_3)+....1/(a_na_(n+1)) will approach

NCERT EXEMPLAR ENGLISH-INVERSE TRIGONOMETRIC FUNCTIONS-Fillers
  1. If a1, a2,a3, ,an is an A.P. with common difference d , then prove th...

    Text Solution

    |

  2. The principal value of cos^(-1)(-1/2) is

    Text Solution

    |

  3. The value of sin^(-1)(sin'(3pi)/(5)) is "….."

    Text Solution

    |

  4. If cos(tan^(-1)x+cot^(-1)sqrt(3))=0 , find the value of xdot

    Text Solution

    |

  5. The set of values of sec^(-1)(1/2) is "……….."

    Text Solution

    |

  6. The principal value of tan^(-1)sqrt(3) is "……."

    Text Solution

    |

  7. The value of cos^(-1)(cos'(14pi)/(3)) is "…….."

    Text Solution

    |

  8. The value of cos(sin^(-1)x + cos^(-1)x), where |x| le 1, is

    Text Solution

    |

  9. The value of tan((sin^(-1)x+cos^(-1)x)/(2)), when x = (sqrt(3))/(2), i...

    Text Solution

    |

  10. If y = 2tan^(-1)x+sin^(-1)((2x)/(1+x^(2))), then "………"lt y lt "………".

    Text Solution

    |

  11. The result tan^(-1)x-tan^(-1)y = tan^(-1)((x-y)/(1+xy)) is true whe...

    Text Solution

    |

  12. The value of cot^(-1)(-x) x in R in terms of cot^(-1)x is "…….."

    Text Solution

    |

  13. All trigonometric functions have inverse over their respective domin...

    Text Solution

    |

  14. The value of the expression (cos^(-1)x)^(2) is equal to sec^(2)x.

    Text Solution

    |

  15. The domain of trigonometric functions can be restricted to any one o...

    Text Solution

    |

  16. The least numerical value, either positive or negative of angle thet...

    Text Solution

    |

  17. The graph of inverse trigonometric function can be obtained from th...

    Text Solution

    |

  18. The minimum value of n for which tan^(-1)'n/pi gt (pi)/(4), n in N, i...

    Text Solution

    |

  19. The principal value of sin^(-1)[cos(sin^(-1)'1/2)] is pi/3.

    Text Solution

    |