Home
Class 12
MATHS
The value of sin^(-1)(cos(33pi)/5) is (...

The value of `sin^(-1)(cos(33pi)/5)` is
(a)`(3pi)/5`
(b) `-pi/(10)`
(c) `pi/(10)`
(d) `(7pi)/5`

A

`(3pi)/(5)`

B

`(-7pi)/(5)`

C

`(pi)/(10)`

D

`(-pi)/(10)`

Text Solution

AI Generated Solution

The correct Answer is:
To find the value of \( \sin^{-1}(\cos(33\pi/5)) \), we will follow these steps: ### Step 1: Simplify \( 33\pi/5 \) We can express \( 33\pi/5 \) in a more manageable form. We can separate it into two parts: \[ 33\pi/5 = \frac{30\pi}{5} + \frac{3\pi}{5} = 6\pi + \frac{3\pi}{5} \] **Hint:** Break down the angle into a multiple of \( 2\pi \) plus a smaller angle to simplify the calculation. ### Step 2: Determine the cosine value Since \( 6\pi \) represents three complete revolutions (as \( 6\pi = 3 \times 2\pi \)), the angle \( 6\pi + \frac{3\pi}{5} \) lies in the first quadrant. Therefore, we can find: \[ \cos(33\pi/5) = \cos(6\pi + \frac{3\pi}{5}) = \cos(\frac{3\pi}{5}) \] **Hint:** Remember that cosine is periodic with a period of \( 2\pi \). ### Step 3: Rewrite \( \frac{3\pi}{5} \) Next, we can express \( \frac{3\pi}{5} \) in terms of a sine function: \[ \frac{3\pi}{5} = \pi - \frac{2\pi}{5} \] Thus, we have: \[ \cos\left(\frac{3\pi}{5}\right) = -\cos\left(\frac{2\pi}{5}\right) \] **Hint:** Use the identity \( \cos(\pi - x) = -\cos(x) \) to relate angles. ### Step 4: Find \( \sin^{-1}(\cos(33\pi/5)) \) Now, we can find: \[ \sin^{-1}(\cos(33\pi/5)) = \sin^{-1}(-\cos(\frac{2\pi}{5})) \] Using the identity \( \sin^{-1}(-x) = -\sin^{-1}(x) \), we get: \[ \sin^{-1}(-\cos(\frac{2\pi}{5})) = -\sin^{-1}(\cos(\frac{2\pi}{5})) \] **Hint:** Remember that \( \sin^{-1}(-x) = -\sin^{-1}(x) \). ### Step 5: Evaluate \( \sin^{-1}(\cos(\frac{2\pi}{5})) \) We can express \( \cos(\frac{2\pi}{5}) \) as \( \sin(\frac{\pi}{2} - \frac{2\pi}{5}) = \sin(\frac{\pi}{2} - \frac{2\pi}{5}) \). Therefore: \[ \sin^{-1}(\cos(\frac{2\pi}{5})) = \frac{\pi}{2} - \frac{2\pi}{5} \] Calculating this gives: \[ \frac{\pi}{2} - \frac{2\pi}{5} = \frac{5\pi}{10} - \frac{4\pi}{10} = \frac{\pi}{10} \] **Hint:** Use the complementary angle identity to find the sine inverse. ### Step 6: Final Result Putting it all together, we have: \[ \sin^{-1}(\cos(33\pi/5)) = -\left(\frac{\pi}{10}\right) = -\frac{\pi}{10} \] Thus, the final answer is: \[ \boxed{-\frac{\pi}{10}} \]

To find the value of \( \sin^{-1}(\cos(33\pi/5)) \), we will follow these steps: ### Step 1: Simplify \( 33\pi/5 \) We can express \( 33\pi/5 \) in a more manageable form. We can separate it into two parts: \[ 33\pi/5 = \frac{30\pi}{5} + \frac{3\pi}{5} = 6\pi + \frac{3\pi}{5} \] ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|2 Videos

Similar Questions

Explore conceptually related problems

Find the value of sin^(-1) ( cos. ( 33pi)/5) .

The value of sin(pi/14)sin((3pi)/14)sin((5pi)/14) is

The value of sin(pi/14)sin((3pi)/14)sin((5pi)/14) is

The principal value of sin^(-1)(sin((2pi)/3)) is (a) -(2pi)/3 (b) (2pi)/3 (c) (4pi)/3 (d) (5pi)/3 (e) none of these

Which of the following is/are the value of "cos"[1/2cos^(-1)(cos(-(14pi)/5)]? cos(-(7pi)/5) (b) sin(pi/(10)) cos((2pi)/5) (d) -cos((3pi)/5)

The value of cos^(-1)(cos((5pi)/3))+sin^(-1)(sin((5pi)/3)) is (a) pi/2 (b) (5pi)/3 (c) (10pi)/3 (d) 0

[[cos(pi)/(5)-i sin(pi)/(5)]]^(-5)

The value of cos(pi/2^(2)).cos(pi/2^(3))……….cos(pi/2^(10)).sin(pi/2^(10)) is

The amplitude of sin (pi)/(5) +i(1-cos"" (pi)/(5)) is

The value of cos[1/2cos^(-1)(cos(-(14pi)/5))]\ is/are a. cos(-(7pi)/5) b. sin(pi/(10)) c. cos((2pi)/5)\ d. -cos((3pi)/5)