Home
Class 12
MATHS
The domin of the function cos^(-1) (2...

The domin of the function `cos^(-1) (2x-1)` is

A

`[0,1]`

B

`[-1,1]`

C

`(-1,1)`

D

`[0,pi]`

Text Solution

AI Generated Solution

The correct Answer is:
To find the domain of the function \( f(x) = \cos^{-1}(2x - 1) \), we need to ensure that the expression inside the inverse cosine function, \( 2x - 1 \), falls within the valid range for the cosine inverse function. The range for the input of the inverse cosine function is: \[ -1 \leq 2x - 1 \leq 1 \] ### Step 1: Set up the inequalities We start by setting up the inequalities based on the range of the inverse cosine function: \[ -1 \leq 2x - 1 \leq 1 \] ### Step 2: Solve the left inequality First, we solve the left part of the inequality: \[ -1 \leq 2x - 1 \] Add 1 to both sides: \[ 0 \leq 2x \] Now, divide both sides by 2: \[ 0 \leq x \] ### Step 3: Solve the right inequality Next, we solve the right part of the inequality: \[ 2x - 1 \leq 1 \] Add 1 to both sides: \[ 2x \leq 2 \] Now, divide both sides by 2: \[ x \leq 1 \] ### Step 4: Combine the results Now we combine the results from both inequalities: \[ 0 \leq x \leq 1 \] ### Conclusion Thus, the domain of the function \( f(x) = \cos^{-1}(2x - 1) \) is: \[ x \in [0, 1] \]

To find the domain of the function \( f(x) = \cos^{-1}(2x - 1) \), we need to ensure that the expression inside the inverse cosine function, \( 2x - 1 \), falls within the valid range for the cosine inverse function. The range for the input of the inverse cosine function is: \[ -1 \leq 2x - 1 \leq 1 \] ### Step 1: Set up the inequalities We start by setting up the inequalities based on the range of the inverse cosine function: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|2 Videos

Similar Questions

Explore conceptually related problems

The domain of the function f(x)= cos^(-1)(x+[x]) is

The domain of the function f(x) = sin^(-1) ((2-|x|)/(4)) + cos^(-1) ((2-|x|)/(4)) + tan^(-1) ((2-|x|)/(4)) is

The domain of the function f(x)=cos^(-1)((2-absx)/4) is

The function, f(x) = cos^(-1) (cos x) is

The domain of the function f(x)=sqrt(cos^(- 1)((1-|x|)/2)) is

Find the domain of the function: f(x)=cos^(-1)(1+3x+2x^2)

The domain of the function f(x)=cos^(-1)(sec(cos^-1 x))+sin^(-1)(cosec(sin^(-1)x)) is

The domain set of the function f(x) = tan^(-1) x -cot ^(-1) x + cos ^(-1) ( 2-x) is

Find the domain of the function: f(x)=cos^(-1)((6-3x)/4)+cos e c^(-1)((x-1)/2)

The domain of the function f(x)=4sqrt(cos^(-1)((1-|x|)/(2))) is