Home
Class 12
MATHS
If cos(sin^(-1)'2/5 + cos^(-1)x) = 0, t...

If `cos(sin^(-1)'2/5 + cos^(-1)x) = 0`, then x is equal to

A

`1/5`

B

`2/5`

C

`0`

D

`1`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \( \cos(\sin^{-1} \frac{2}{5} + \cos^{-1} x) = 0 \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \cos(\sin^{-1} \frac{2}{5} + \cos^{-1} x) = 0 \] This implies that: \[ \sin^{-1} \frac{2}{5} + \cos^{-1} x = \frac{\pi}{2} + n\pi \quad (n \in \mathbb{Z}) \] For simplicity, we can consider \( n = 0 \): \[ \sin^{-1} \frac{2}{5} + \cos^{-1} x = \frac{\pi}{2} \] ### Step 2: Use the identity We know that: \[ \cos^{-1} x = \frac{\pi}{2} - \sin^{-1} x \] Substituting this into our equation gives: \[ \sin^{-1} \frac{2}{5} + \left(\frac{\pi}{2} - \sin^{-1} x\right) = \frac{\pi}{2} \] ### Step 3: Simplify the equation Now, we can simplify the equation: \[ \sin^{-1} \frac{2}{5} - \sin^{-1} x = 0 \] This leads to: \[ \sin^{-1} \frac{2}{5} = \sin^{-1} x \] ### Step 4: Equate the arguments Since the inverse sine function is one-to-one in the range \([-1, 1]\), we can equate the arguments: \[ x = \frac{2}{5} \] ### Final Answer Thus, the value of \( x \) is: \[ \boxed{\frac{2}{5}} \] ---

To solve the equation \( \cos(\sin^{-1} \frac{2}{5} + \cos^{-1} x) = 0 \), we can follow these steps: ### Step 1: Rewrite the equation We start with the equation: \[ \cos(\sin^{-1} \frac{2}{5} + \cos^{-1} x) = 0 \] This implies that: ...
Doubtnut Promotions Banner Mobile Dark
|

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|2 Videos

Similar Questions

Explore conceptually related problems

If cos (sin^(-1)(2/sqrt(5)) + cos^(-1)x) = 0, then x is equal to A) 1/sqrt(5) B) (-2/sqrt(5)) C) (2/sqrt(5)) D) 1

If 4sin^(-1)x+cos^(-1)x=pi , then x is equal to

If cos(sin^(-1)(2/5)+cos^(-1)x)=0 find the value of xdot

If cos(sin^(-1)(2/5)+cos^(-1)x)=0 find the value of xdot

If cos((sin^(-1)2)/5+cos^(-1)x)=0 find the value of xdot

If x = sin^(-1)(sin 10) and y = cos^(-1)(cos 10) then y - x is equal to:

Prove that sin^(-1) cos (sin^(-1) x) + cos^(-1) x) = (pi)/(2), |x| le 1

If cos2x+2 cos x=1 , then (sin^(2)x)(2-cos^(2)x) is equal to

int (cos 9x +cos 6x )/( 2 cos 5x-1)dx =A sin 4x +B sin+C, then A+B is equal to: (Where C is constant of integration)

If sin^-1 x+sin^-1=(2pi)/3, then cos^-1 x cos^-1 y is equal to