Home
Class 12
MATHS
The value of sin[2tan^(-1)(0.75)] is...

The value of `sin[2tan^(-1)(0.75)]` is

A

`0.75`

B

`1.5`

C

`0.96`

D

`sin 1.5`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem of finding the value of \( \sin[2 \tan^{-1}(0.75)] \), we can follow these steps: ### Step 1: Convert the decimal to a fraction We start with \( \tan^{-1}(0.75) \). We can express \( 0.75 \) as a fraction: \[ 0.75 = \frac{75}{100} = \frac{3}{4} \] Thus, we have: \[ \tan^{-1}(0.75) = \tan^{-1}\left(\frac{3}{4}\right) \] ### Step 2: Use the double angle formula for sine We know that: \[ \sin(2 \theta) = 2 \sin(\theta) \cos(\theta) \] In our case, let \( \theta = \tan^{-1}\left(\frac{3}{4}\right) \). Therefore: \[ \sin[2 \tan^{-1}\left(\frac{3}{4}\right)] = 2 \sin\left(\tan^{-1}\left(\frac{3}{4}\right)\right) \cos\left(\tan^{-1}\left(\frac{3}{4}\right)\right) \] ### Step 3: Find \( \sin(\theta) \) and \( \cos(\theta) \) From the definition of tangent, we have: \[ \tan(\theta) = \frac{3}{4} \] This means that in a right triangle, the opposite side is 3 and the adjacent side is 4. We can find the hypotenuse using the Pythagorean theorem: \[ \text{Hypotenuse} = \sqrt{3^2 + 4^2} = \sqrt{9 + 16} = \sqrt{25} = 5 \] Now we can find \( \sin(\theta) \) and \( \cos(\theta) \): \[ \sin(\theta) = \frac{\text{Opposite}}{\text{Hypotenuse}} = \frac{3}{5} \] \[ \cos(\theta) = \frac{\text{Adjacent}}{\text{Hypotenuse}} = \frac{4}{5} \] ### Step 4: Substitute back into the sine double angle formula Now substituting these values back into our formula: \[ \sin[2 \tan^{-1}\left(\frac{3}{4}\right)] = 2 \cdot \frac{3}{5} \cdot \frac{4}{5} \] Calculating this gives: \[ = 2 \cdot \frac{12}{25} = \frac{24}{25} \] ### Step 5: Final answer Thus, the value of \( \sin[2 \tan^{-1}(0.75)] \) is: \[ \frac{24}{25} \]

To solve the problem of finding the value of \( \sin[2 \tan^{-1}(0.75)] \), we can follow these steps: ### Step 1: Convert the decimal to a fraction We start with \( \tan^{-1}(0.75) \). We can express \( 0.75 \) as a fraction: \[ 0.75 = \frac{75}{100} = \frac{3}{4} \] Thus, we have: ...
Promotional Banner

Topper's Solved these Questions

  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|18 Videos
  • INTEGRALS

    NCERT EXEMPLAR ENGLISH|Exercise Fillers|3 Videos
  • LINEAR PROGRAMMING

    NCERT EXEMPLAR ENGLISH|Exercise TRUE/FALSE|2 Videos

Similar Questions

Explore conceptually related problems

The value of sin(2\ tan^(-1)(0. 75)) is equal to (a) 0.75 (b) 1.5 (c) 0.96 (d) sin^(-1)1. 5

The value of tan75

The value of tan75^(@) =

The value of 2 sin 15^(@).cos75^(@)

The value of "tan"75^(@)-"cot"75^(@) is equal to

If (x -1) (x^(2) + 1) gt 0 , then find the value of sin((1)/(2) tan^(-1).(2x)/(1 - x^(2)) - tan^(-1) x)

If (x -1) (x^(2) + 1) gt 0 , then find the value of sin((1)/(2) tan^(-1).(2x)/(1 - x^(2)) - tan^(-1) x)

Find the value of: sin75^(0)

The value of sin^2 75^0-sin^2 15^0 is a. 1//2 b. sqrt(3)//2 c. 1 d. 0

Find the value of expression: sin(2tan^(-1)(1/3))+cos(tan^(-1)2sqrt(2))